Calculus rules

Concatenation

AbstractOperators.VCATType

VCAT(A::AbstractOperator...)

Shorthand constructors:

[A1; A2 ...]

vcat(A...)

Vertically concatenate AbstractOperators. Notice that all the operators must share the same domain dimensions and type, e.g. size(A1,2) == size(A2,2) and domainType(A1) == domainType(A2).

julia> VCAT(DFT(4,4),Variation((4,4)))
[ℱ;Ʋ]  ℝ^(4, 4) -> ℂ^(4, 4)  ℝ^(16, 2)

julia> V = [Eye(3); DiagOp(2*ones(3))]
[I;╲]  ℝ^3 -> ℝ^3  ℝ^3

julia> vcat(V,FiniteDiff((3,)))
VCAT  ℝ^3 -> ℝ^3  ℝ^3  ℝ^2

When multiplying a VCAT with an array of the proper size, the result will be a Tuple containing arrays with the VCAT's codomain type and size.

julia> V*ones(3)
([1.0, 1.0, 1.0], [2.0, 2.0, 2.0])
source
AbstractOperators.HCATType

HCAT(A::AbstractOperator...)

Shorthand constructors:

[A1 A2 ...]

hcat(A...)

Horizontally concatenate AbstractOperators. Notice that all the operators must share the same codomain dimensions and type, e.g. size(A1,1) == size(A2,1) and codomainType(A1) == codomainType(A2).

julia> HCAT(DFT(10),DCT(Complex{Float64},20)[1:10])
[ℱ,↓*ℱc]  ℝ^10  ℂ^20 -> ℂ^10

julia> H = [Eye(10) DiagOp(2*ones(10))]
[I,╲]  ℝ^10  ℝ^10 -> ℝ^10

julia> hcat(H,DCT(10))
HCAT  ℝ^10  ℝ^10  ℝ^10 -> ℝ^10

To evaluate HCAT operators multiply them with a Tuple of AbstractArray of the correct dimensions and type.

julia> H*ArrayPartition(ones(10),ones(10))
3-element Array{Float64,1}:
 3.0
 3.0
 3.0
 ...
source
AbstractOperators.DCATType

DCAT(A::AbstractOperator...)

Block-diagonally concatenate AbstractOperators.

julia> D = DCAT(HCAT(Eye(2),Eye(2)),DFT(3))
[[I,I],0;0,ℱ]  ℝ^2  ℝ^2  ℝ^4 -> ℝ^2  ℂ^3

julia> DCAT(Eye(10),Eye(10),FiniteDiff((4,4)))
DCAT  ℝ^10  ℝ^10  ℝ^(4, 4) -> ℝ^10  ℝ^10  ℝ^(3, 4)

To evaluate DCAT operators multiply them with a Tuple of AbstractArray of the correct domain size and type. The output will consist as well of a Tuple with the codomain type and size of the DCAT.

julia> D*ArrayPartition(ones(2),ones(2),ones(3))
([2.0, 2.0], Complex{Float64}[3.0+0.0im, 0.0+0.0im, 0.0+0.0im])
source

Composition

AbstractOperators.ComposeType

Compose(A::AbstractOperator,B::AbstractOperator)

Shorthand constructor:

A*B

Compose different AbstractOperators. Notice that the domain and codomain of the operators A and B must match, i.e. size(A,2) == size(B,1) and domainType(A) == codomainType(B).

julia> Compose(DFT(16,2),Variation((4,4)))
ℱc*Ʋ  ℝ^(4, 4) -> ℝ^(16, 2)

julia> MatrixOp(randn(20,10))*DCT(10)
▒*ℱc  ℝ^10 -> ℝ^20
source
AbstractOperators.HadamardProdType

HadamardProd(A::AbstractOperator,B::AbstractOperator)

Create an operator P such that:

P*x == (Ax).*(Bx)

Example

julia> A,B = Sin(3), Cos(3);

julia> P = HadamardProd(A,B)
sin.*cos  ℝ^3 -> ℝ^3

julia> x = randn(3);

julia> P*x == (sin.(x).*cos.(x))
true

source
AbstractOperators.Ax_mul_BxType

Ax_mul_Bx(A::AbstractOperator,B::AbstractOperator)

Create an operator P such that:

P*x == (Ax)*(Bx)

Example

julia> A,B = randn(4,4),randn(4,4);

julia> P = Ax_mul_Bx(MatrixOp(A,4),MatrixOp(B,4))
▒*▒  ℝ^4 -> ℝ^(4, 4)

julia> X = randn(4,4);

julia> P*X == (A*X)*(B*X)
true
source
AbstractOperators.Axt_mul_BxType

Axt_mul_Bx(A::AbstractOperator,B::AbstractOperator)

Create an operator P such that:

P*x == (Ax)'*(Bx)

Example

julia> A,B = randn(4,4),randn(4,4);

julia> P = Axt_mul_Bx(MatrixOp(A),MatrixOp(B))
▒*▒  ℝ^4 -> ℝ^1

julia> x = randn(4);

julia> P*x == [(A*x)'*(B*x)]
true
source
AbstractOperators.Ax_mul_BxtType

Ax_mul_Bxt(A::AbstractOperator,B::AbstractOperator)

Create an operator P such that:

P == (Ax)*(Bx)'

Example: Matrix multiplication

julia> A,B = randn(4,4),randn(4,4);

julia> P = Ax_mul_Bxt(MatrixOp(A),MatrixOp(B))
▒*▒  ℝ^4 -> ℝ^(4, 4)

julia> x = randn(4);

julia> P*x == (A*x)*(B*x)'
true
source

Transformations

AbstractOperators.ScaleType

Scale(α::Number,A::AbstractOperator)

Shorthand constructor:

*(α::Number,A::AbstractOperator)

Scale an AbstractOperator by a factor of α.

julia> A = FiniteDiff((10,2))
δx  ℝ^(10, 2) -> ℝ^(9, 2)

julia> S = Scale(10,A)
αδx  ℝ^(10, 2) -> ℝ^(9, 2)

julia> 10*A         #shorthand 
αℱc  ℝ^10 -> ℝ^10
source
AbstractOperators.AdjointOperatorType

AdjointOperator(A::AbstractOperator)

Shorthand constructor:

'(A::AbstractOperator)

Returns the adjoint operator of A.

julia> AdjointOperator(DFT(10))
ℱᵃ  ℂ^10 -> ℝ^10

julia> [DFT(10); DCT(10)]'
[ℱ;ℱc]ᵃ  ℂ^10  ℝ^10 -> ℝ^10
source
AbstractOperators.AffineAddType

AffineAdd(A::AbstractOperator, d, [sign = true])

Affine addition to AbstractOperator with an array or scalar d.

Use sign = false to perform subtraction.

julia> A = AffineAdd(Sin(3),[1.;2.;3.])
sin+d  ℝ^3 -> ℝ^3

julia> A*[3.;4.;5.] == sin.([3.;4.;5.]).+[1.;2.;3.]
true

julia> A = AffineAdd(Exp(3),[1.;2.;3.],false)
e-d  ℝ^3 -> ℝ^3

julia> A*[3.;4.;5.] == exp.([3.;4.;5.]).-[1.;2.;3.]
true
source
AbstractOperators.BroadCastType

BroadCast(A::AbstractOperator, dim_out...)

BroadCast the codomain dimensions of an AbstractOperator.

julia> A = Eye(2)
I  ℝ^2 -> ℝ^2

julia> B = BroadCast(A,(2,3))
.I  ℝ^2 -> ℝ^(2, 3)

julia> B*[1.;2.]
2×3 Array{Float64,2}:
 1.0  1.0  1.0
 2.0  2.0  2.0
source
AbstractOperators.ReshapeType

Reshape(A::AbstractOperator, dim_out...)

Shorthand constructor:

reshape(A, idx...)

Reshape the codomain dimensions of an AbstractOperator.

julia> A = Reshape(DFT(10),2,5)
¶ℱ  ℝ^10 -> ℂ^(2, 5)

julia> R = reshape(Conv((19,),randn(10)),7,2,2)
¶★  ℝ^19 -> ℝ^(7, 2, 2)
source
AbstractOperators.JacobianType

Jacobian(A::AbstractOperator,x)

Shorthand constructor:

jacobian(A::AbstractOperator,x)

Returns the jacobian of A evaluated at x (which in the case of a LinearOperator is A itself).

julia> Jacobian(DFT(10),randn(10))
ℱ  ℝ^10 -> ^ℂ10

julia> Jacobian(Sigmoid((10,)),randn(10))
J(σ)  ℝ^10 -> ℝ^10
source