Hanging Chain#

In this example, a mode predictive controller (MPC) is used to stabilize a system of weights connected by springs. The rightmost weight is fixed in place at the origin, whereas the velocity of the leftmost weight can be controlled by an actuator. The six weights in the middle move under the influence of gravity and the forces of the springs between them.

The goal of the controller is to stabilize the system (i.e. drive the velocity of all weights to zero) with the rightmost weight at position \((1, 0)\). Additionally, a non-convex cubic constraint on the weights’ position is imposed, shown in green on the figure below.

  1# %% Hanging chain MPC example
  2
  3import casadi as cs
  4import numpy as np
  5from os.path import dirname
  6import sys
  7
  8sys.path.append(dirname(__file__))
  9from hanging_chain_dynamics import HangingChain
 10
 11# %% Build the model
 12
 13Ts = 0.05  # Time step [s]
 14N = 6  # Number of balls
 15dim = 2  # Dimension (2D or 3D)
 16
 17model = HangingChain(N, dim, Ts)
 18y_null, u_null = model.initial_state()  # Initial states and control inputs
 19
 20model_param = [0.03, 1.6, 0.033 / N]  # Concrete parameters m, D, L
 21
 22# %% Apply an initial control input to disturb the system
 23
 24N_dist = 3  # Number of time steps to apply the disturbance for
 25u_dist = [-0.5, 0.5, 0.5] if dim == 3 else [-0.5, 0.5]  # Disturbance input
 26y_dist = model.simulate(N_dist, y_null, u_dist, model_param)  # Model states
 27y_dist = np.hstack((np.array([y_null]).T, y_dist))  # (including initial state)
 28
 29# %% Simulate the system without a controller
 30
 31N_sim = 180  # Number of time steps to simulate for
 32y_sim = model.simulate(N_sim, y_dist[:, -1], u_null, model_param)  # States
 33y_sim = np.hstack((y_dist, y_sim))  # (including disturbed and initial states)
 34
 35# %% Define MPC cost and constraints
 36
 37N_horiz = 12  # MPC horizon length (number of time steps)
 38
 39y_init = cs.MX.sym("y_init", *y_null.shape)  # Initial state
 40model_params = cs.MX.sym("params", *model.params.shape)  # Parameters
 41num_var = dim * N_horiz
 42U = cs.MX.sym("U", num_var)  # Control signals over horizon
 43U_mat = model.input_to_matrix(U)  # Input as dim by N_horiz matrix
 44constr_param = cs.MX.sym("c", 3)  # Coefficients of cubic constraint function
 45mpc_param = cs.vertcat(y_init, model_params, constr_param)  # All parameters
 46
 47# Cost
 48
 49# Stage costs for states and input
 50stage_y_cost, stage_u_cost = model.generate_cost_funcs()
 51# Simulate the model with the input over the horizon
 52mpc_sim = model.simulate(N_horiz, y_init, U_mat, model_params)
 53# Accumulate the cost of the outputs and inputs
 54mpc_y_cost = cs.sum2(stage_y_cost.map(N_horiz)(mpc_sim))
 55mpc_u_cost = cs.sum2(stage_u_cost.map(N_horiz)(U_mat))
 56mpc_cost = mpc_y_cost + mpc_u_cost
 57
 58# Constraints
 59
 60# Cubic constraint function for a single ball in one dimension
 61g_constr = lambda c, x: c[0] * x**3 + c[1] * x**2 + c[2] * x
 62# Constraint function for one stage (N balls)
 63y_c = cs.MX.sym("y_c", y_dist.shape[0])
 64constr = []
 65for i in range(N):  # for each ball in the stage except the last,
 66    yx_n = y_c[dim * i]  # constrain the x, y position of the ball
 67    yy_n = y_c[dim * i + dim - 1]
 68    constr += [yy_n - g_constr(constr_param, yx_n)]
 69constr += [y_c[-1] - g_constr(constr_param, y_c[-dim])]  # Ball N+1
 70constr_fun = cs.Function("c", [y_c, constr_param], [cs.vertcat(*constr)])
 71# Constraint function for all stages in the horizon
 72mpc_constr = cs.vec(constr_fun.map(N_horiz)(mpc_sim, constr_param))
 73num_constr = (N + 1) * N_horiz
 74# Fill in the constraint coefficients c(x-a)³ + d(x-a) + b
 75a, b, c, d = 0.6, -1.4, 5, 2.2
 76constr_coeff = [c, -3 * a * c, 3 * a * a * c + d]
 77constr_lb = b - c * a**3 - d * a
 78# Box constraints on actuator:
 79C = -1 * np.ones(num_var), +1 * np.ones(num_var)  # lower bound, upper bound
 80# Constant term of the cubic state constraints as a one-sided box:
 81D = constr_lb * np.ones(num_constr), +np.inf * np.ones(num_constr)
 82
 83# Initial parameter value
 84
 85y_n = np.array(y_dist[:, -1]).ravel()  # Initial state of the chain
 86n_state = y_n.shape[0]
 87param_0 = np.concatenate((y_n, model_param, constr_coeff))
 88
 89# %% NLP formulation
 90
 91import alpaqa
 92
 93# Generate C code for the cost and constraint functions, compile them, and load
 94# them as an alpaqa problem description:
 95problem = (
 96    alpaqa.minimize(mpc_cost, U)  # objective and variables         f(x; p)
 97    .subject_to_box(C)  #           box constraints on variables    x ∊ C
 98    .subject_to(mpc_constr, D)  #   general constraints             g(x; p) ∊ D
 99    .with_param(mpc_param)  #       parameter to be changed later   p
100    .with_param_value(param_0)  # initial parameter value
101).compile(sym=cs.MX.sym)
102
103# %% NLP solver
104
105from datetime import timedelta
106
107# Configure an alpaqa solver:
108solver = alpaqa.ALMSolver(
109    alm_params={
110        "tolerance": 1e-3,
111        "dual_tolerance": 1e-3,
112        "initial_penalty": 1e4,
113        "max_iter": 100,
114        "max_time": timedelta(seconds=0.2),
115    },
116    inner_solver=alpaqa.PANOCSolver(
117        panoc_params={
118            "stop_crit": alpaqa.FPRNorm,
119            "max_time": timedelta(seconds=0.02),
120        },
121        lbfgs_params={"memory": N_horiz},
122    ),
123)
124
125# %% MPC controller
126
127
128# Wrap the solver in a class that solves the optimal control problem at each
129# time step, implementing warm starting:
130class MPCController:
131    def __init__(self, model: HangingChain, problem: alpaqa.CasADiProblem):
132        self.model = model
133        self.problem = problem
134        self.tot_it = 0
135        self.tot_time = timedelta()
136        self.max_time = timedelta()
137        self.failures = 0
138        self.U = np.zeros(problem.n)
139        self.λ = np.zeros(problem.m)
140
141    def __call__(self, y_n):
142        y_n = np.array(y_n).ravel()
143        # Set the current state as the initial state
144        self.problem.param[: y_n.shape[0]] = y_n
145        # Shift over the previous solution and Lagrange multipliers
146        self.U = np.concatenate((self.U[dim:], self.U[-dim:]))
147        self.λ = np.concatenate((self.λ[N + 1 :], self.λ[-N - 1 :]))
148        # Solve the optimal control problem
149        # (warm start using the shifted previous solution and multipliers)
150        self.U, self.λ, stats = solver(self.problem, self.U, self.λ)
151        # Print some solver statistics
152        print(
153            f'{stats["status"]} outer={stats["outer_iterations"]} '
154            f'inner={stats["inner"]["iterations"]} time={stats["elapsed_time"]} '
155            f'failures={stats["inner_convergence_failures"]}'
156        )
157        self.tot_it += stats["inner"]["iterations"]
158        self.failures += stats["status"] != alpaqa.SolverStatus.Converged
159        self.tot_time += stats["elapsed_time"]
160        self.max_time = max(self.max_time, stats["elapsed_time"])
161        # Print the Lagrange multipliers, shows that constraints are active
162        print(np.linalg.norm(self.λ))
163        # Return the optimal control signal for the first time step
164        return self.model.input_to_matrix(self.U)[:, 0]
165
166
167# %% Simulate the system using the MPC controller
168
169problem.param = param_0
170
171y_mpc = np.empty((n_state, N_sim))
172controller = MPCController(model, problem)
173for n in range(N_sim):
174    # Solve the optimal control problem:
175    u_n = controller(y_n)
176    # Apply the first optimal control input to the system and simulate for
177    # one time step, then update the state:
178    y_n = model.simulate(1, y_n, u_n, model_param).T
179    y_mpc[:, n] = y_n
180y_mpc = np.hstack((y_dist, y_mpc))
181
182print(f"{controller.tot_it} inner iterations, {controller.failures} failures")
183print(
184    f"time: {controller.tot_time} (total), {controller.max_time} (max), "
185    f"{controller.tot_time / N_sim} (avg)"
186)
187
188# %% Visualize the results
189
190import matplotlib.pyplot as plt
191import matplotlib as mpl
192from matplotlib import animation, patheffects
193
194mpl.rcParams["animation.frame_format"] = "svg"
195
196# Plot the chains
197fig, ax = plt.subplots()
198x, y, z = model.state_to_pos(y_null)
199(line,) = ax.plot(x, y, "-o", label="Without MPC")
200(line_ctrl,) = ax.plot(x, y, "-o", label="With MPC")
201plt.legend()
202plt.ylim([-2.5, 1])
203plt.xlim([-0.25, 1.25])
204
205# Plot the state constraints
206x = np.linspace(-0.25, 1.25, 256)
207y = np.linspace(-2.5, 1, 256)
208X, Y = np.meshgrid(x, y)
209Z = g_constr(constr_coeff, X) + constr_lb - Y
210fx = [patheffects.withTickedStroke(spacing=7, linewidth=0.8)]
211cgc = plt.contour(X, Y, Z, [0], colors="tab:green", linewidths=0.8)
212plt.setp(cgc.collections, path_effects=fx)
213
214
215class Animation:
216    points = []
217
218    def __call__(self, i):
219        x, y, z = model.state_to_pos(y_sim[:, i])
220        y = z if dim == 3 else y
221        for p in self.points:
222            p.remove()
223        self.points = []
224        line.set_xdata(x)
225        line.set_ydata(y)
226        viol = y - g_constr(constr_coeff, x) + 1e-5 < constr_lb
227        if np.sum(viol):
228            self.points += ax.plot(x[viol], y[viol], "rx", markersize=12)
229        x, y, z = model.state_to_pos(y_mpc[:, i])
230        y = z if dim == 3 else y
231        line_ctrl.set_xdata(x)
232        line_ctrl.set_ydata(y)
233        viol = y - g_constr(constr_coeff, x) + 1e-5 < constr_lb
234        if np.sum(viol):
235            self.points += ax.plot(x[viol], y[viol], "rx", markersize=12)
236        return [line, line_ctrl] + self.points
237
238
239ani = animation.FuncAnimation(
240    fig,
241    Animation(),
242    interval=1000 * Ts,
243    blit=True,
244    repeat=True,
245    frames=1 + N_dist + N_sim,
246)
247
248# Show the animation
249plt.show()

hanging_chain_dynamics.py

  1from typing import Union
  2import casadi as cs
  3import numpy as np
  4from casadi import vertcat as vc
  5
  6
  7class HangingChain:
  8
  9    def __init__(self, N: int, dim: int, Ts: float = 0.05):
 10        self.N = N
 11        self.dim = dim
 12
 13        self.y1 = cs.SX.sym("y1", dim * N, 1)  # state: balls 1→N positions
 14        self.y2 = cs.SX.sym("y2", dim * N, 1)  # state: balls 1→N velocities
 15        self.y3 = cs.SX.sym("y3", dim, 1)  # state: ball  1+N position
 16        self.u = cs.SX.sym("u", dim, 1)  # input: ball  1+N velocity
 17        self.y = vc(self.y1, self.y2, self.y3)  # full state vector
 18
 19        self.m = cs.SX.sym("m")  # mass
 20        self.D = cs.SX.sym("D")  # spring constant
 21        self.L = cs.SX.sym("L")  # spring length
 22        self.params = vc(self.m, self.D, self.L)
 23
 24        self.g = np.array([0, 0, -9.81] if dim == 3 else [0, -9.81])  # gravity
 25        self.x0 = np.zeros((dim, ))  # ball 0 position
 26        self.x_end = np.eye(1, dim, 0).ravel()  # ball N+1 reference position
 27
 28        self._build_dynamics(Ts)
 29
 30    def _build_dynamics(self, Ts):
 31        y, y1, y2, y3, u = self.y, self.y1, self.y2, self.y3, self.u
 32        dist = lambda xa, xb: cs.norm_2(xa - xb)
 33        N, d = self.N, self.dim
 34        p = self.params
 35
 36        # Continuous-time dynamics y' = f(y, u; p)
 37
 38        f1 = [y2]
 39        f2 = []
 40        for i in range(N):
 41            xi = y1[d * i:d * i + d]
 42            xip1 = y1[d * i + d:d * i + d * 2] if i < N - 1 else y3
 43            Fiip1 = self.D * (1 - self.L / dist(xip1, xi)) * (xip1 - xi)
 44            xim1 = y1[d * i - d:d * i] if i > 0 else self.x0
 45            Fim1i = self.D * (1 - self.L / dist(xi, xim1)) * (xi - xim1)
 46            fi = (Fiip1 - Fim1i) / self.m + self.g
 47            f2 += [fi]
 48        f3 = [u]
 49
 50        f_expr = vc(*f1, *f2, *f3)
 51        self.f = cs.Function("f", [y, u, p], [f_expr], ["y", "u", "p"], ["y'"])
 52
 53        # Discretize dynamics y[k+1] = f_d(y[k], u[k]; p)
 54
 55        # 4th order Runge-Kutta integrator
 56        k1 = self.f(y, u, p)
 57        k2 = self.f(y + Ts * k1 / 2, u, p)
 58        k3 = self.f(y + Ts * k2 / 2, u, p)
 59        k4 = self.f(y + Ts * k3, u, p)
 60
 61        # Discrete-time dynamics
 62        f_d_expr = y + (Ts / 6) * (k1 + 2 * k2 + 2 * k3 + k4)
 63        self.f_d = cs.Function("f", [y, u, p], [f_d_expr])
 64
 65        return self.f_d
 66
 67    def state_to_pos(self, y):
 68        N, d = self.N, self.dim
 69        rav = lambda x: np.array(x).ravel()
 70        xdim = lambda y, i: np.concatenate(
 71            ([0], rav(y[i:d * N:d]), rav(y[-d + i])))
 72        if d == 3:
 73            return (xdim(y, 0), xdim(y, 1), xdim(y, 2))
 74        else:
 75            return (xdim(y, 0), xdim(y, 1), np.zeros((N + 1, )))
 76
 77    def input_to_matrix(self, u):
 78        """
 79        Reshape the input signal from a vector into a dim × N_horiz matrix (note
 80        that CasADi matrices are stored column-wise and NumPy arrays row-wise)
 81        """
 82        if isinstance(u, np.ndarray):
 83            return u.reshape((self.dim, u.shape[0] // self.dim), order='F')
 84        else:
 85            return u.reshape((self.dim, u.shape[0] // self.dim))
 86
 87    def simulate(self, N_sim: int, y_0: np.ndarray,
 88                 u: Union[np.ndarray, list, cs.SX.sym, cs.MX.sym],
 89                 p: Union[np.ndarray, list, cs.SX.sym, cs.MX.sym]):
 90        if isinstance(u, list):
 91            u = np.array(u)
 92        if isinstance(u, np.ndarray):
 93            if u.ndim == 1 or (u.ndim == 2 and u.shape[1] == 1):
 94                if u.shape[0] == self.dim:
 95                    u = np.tile(u, (N_sim, 1)).T
 96        return self.f_d.mapaccum(N_sim)(y_0, u, p)
 97
 98    def initial_state(self):
 99        N, d = self.N, self.dim
100        y1_0 = np.zeros((d * N))
101        y1_0[0::d] = np.arange(1, N + 1) / (N + 1)
102        y2_0 = np.zeros((d * N))
103        y3_0 = np.zeros((d, ))
104        y3_0[0] = 1
105
106        y_null = np.concatenate((y1_0, y2_0, y3_0))
107        u_null = np.zeros((d, ))
108
109        return y_null, u_null
110
111    def generate_cost_funcs(self, α=25, β=1, γ=0.01):
112        N, d = self.N, self.dim
113        y1t = cs.SX.sym("y1t", d * N, 1)
114        y2t = cs.SX.sym("y2t", d * N, 1)
115        y3t = cs.SX.sym("y3t", d, 1)
116        ut = cs.SX.sym("ut", d, 1)
117        yt = cs.vertcat(y1t, y2t, y3t)
118
119        L_cost_x = α * cs.sumsqr(y3t - self.x_end)
120        for i in range(N):
121            xdi = y2t[d * i:d * i + d]
122            L_cost_x += β * cs.sumsqr(xdi)
123        L_cost_u = γ * cs.sumsqr(ut)
124        return cs.Function("L_cost_x", [yt], [L_cost_x]), \
125            cs.Function("L_cost_u", [ut], [L_cost_u])