Functions and operators#
(Proximal) functions and operators.
- alpaqa.prox(*args, **kwargs)
Overloaded function.
prox(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float
C++ documentation:
alpaqa::prox
Compute the proximal mapping ofself
atin
with step sizeγ
. This version overwrites the given output arguments.See also
prox(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> tuple[float, numpy.ndarray[numpy.float64[m, n]]]
C++ documentation:
alpaqa::prox
Compute the proximal mapping ofself
atin
with step sizeγ
. This version returns the outputs as a tuple.See also
prox(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float
C++ documentation:
alpaqa::prox
Compute the proximal mapping ofself
atin
with step sizeγ
. This version overwrites the given output arguments.See also
prox(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> tuple[float, numpy.ndarray[numpy.float64[m, n]]]
C++ documentation:
alpaqa::prox
Compute the proximal mapping ofself
atin
with step sizeγ
. This version returns the outputs as a tuple.See also
prox(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float
C++ documentation:
alpaqa::prox
Compute the proximal mapping ofself
atin
with step sizeγ
. This version overwrites the given output arguments.See also
prox(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> tuple[float, numpy.ndarray[numpy.float64[m, n]]]
C++ documentation:
alpaqa::prox
Compute the proximal mapping ofself
atin
with step sizeγ
. This version returns the outputs as a tuple.See also
prox(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float
C++ documentation:
alpaqa::prox
Compute the proximal mapping ofself
atin
with step sizeγ
. This version overwrites the given output arguments.See also
prox(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> tuple[float, numpy.ndarray[numpy.float64[m, n]]]
C++ documentation:
alpaqa::prox
Compute the proximal mapping ofself
atin
with step sizeγ
. This version returns the outputs as a tuple.See also
- alpaqa.prox_step(*args, **kwargs)
Overloaded function.
prox_step(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float
C++ documentation:
alpaqa::prox_step
Compute a generalized forward-backward step. This version overwrites the given output arguments.See also
prox_step(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]]
C++ documentation:
alpaqa::prox_step
Compute a generalized forward-backward step. This version returns the outputs as a tuple.See also
prox_step(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float
C++ documentation:
alpaqa::prox_step
Compute a generalized forward-backward step. This version overwrites the given output arguments.See also
prox_step(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]]
C++ documentation:
alpaqa::prox_step
Compute a generalized forward-backward step. This version returns the outputs as a tuple.See also
prox_step(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float
C++ documentation:
alpaqa::prox_step
Compute a generalized forward-backward step. This version overwrites the given output arguments.See also
prox_step(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]]
C++ documentation:
alpaqa::prox_step
Compute a generalized forward-backward step. This version returns the outputs as a tuple.See also
prox_step(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float
C++ documentation:
alpaqa::prox_step
Compute a generalized forward-backward step. This version overwrites the given output arguments.See also
prox_step(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]]
C++ documentation:
alpaqa::prox_step
Compute a generalized forward-backward step. This version returns the outputs as a tuple.See also