Problem formulation¶
- class alpaqa.BoxConstrProblem
C++ documentation:
alpaqa::BoxConstrProblem
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: alpaqa._alpaqa.float64.BoxConstrProblem, other: alpaqa._alpaqa.float64.BoxConstrProblem) -> None
Create a copy
__init__(self: alpaqa._alpaqa.float64.BoxConstrProblem, num_variables: int, num_constraints: int) -> None
- Parameters:
num_variables – Number of decision variables
num_constraints – Number of constraints
- eval_inactive_indices_res_lna(*args, **kwargs)
Overloaded function.
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]]
- eval_projecting_difference_constraints(*args, **kwargs)
Overloaded function.
eval_projecting_difference_constraints(self: alpaqa._alpaqa.float64.BoxConstrProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_projecting_difference_constraints(self: alpaqa._alpaqa.float64.BoxConstrProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_projection_multipliers(self: alpaqa._alpaqa.float64.BoxConstrProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None
- eval_proximal_gradient_step(*args, **kwargs)
Overloaded function.
eval_proximal_gradient_step(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_proximal_gradient_step(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float]
- property general_bounds
General constraint bounds, \(g(x) \in D\)
- get_general_bounds(self: alpaqa._alpaqa.float64.BoxConstrProblem) alpaqa._alpaqa.float64.Box
- get_variable_bounds(self: alpaqa._alpaqa.float64.BoxConstrProblem) alpaqa._alpaqa.float64.Box
- property l1_reg
\(\ell_1\) regularization on \(x\)
- property num_constraints
Number of general constraints \(m\), dimension of \(g(x)\)
- property num_variables
Number of decision variables \(n\), dimension of \(x\)
- property penalty_alm_split
Index between quadratic penalty and augmented Lagrangian constraints
- resize(self: alpaqa._alpaqa.float64.BoxConstrProblem, num_variables: int, num_constraints: int) None
- property variable_bounds
Box constraints on the decision variables, \(x\in C\)
- class alpaqa.Problem
C++ documentation:
alpaqa::TypeErasedProblem
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: alpaqa._alpaqa.float64.Problem, other: alpaqa._alpaqa.float64.Problem) -> None
Create a copy
__init__(self: alpaqa._alpaqa.float64.Problem, problem: alpaqa._alpaqa.float64.CasADiProblem) -> None
Explicit conversion.
__init__(self: alpaqa._alpaqa.float64.Problem, problem: alpaqa._alpaqa.float64.CUTEstProblem) -> None
Explicit conversion.
__init__(self: alpaqa._alpaqa.float64.Problem, problem: alpaqa._alpaqa.float64.DLProblem) -> None
Explicit conversion.
__init__(self: alpaqa._alpaqa.float64.Problem, problem: object) -> None
Explicit conversion from a custom Python class.
- check(self: alpaqa._alpaqa.float64.Problem) None
- eval_augmented_lagrangian(*args, **kwargs)
Overloaded function.
eval_augmented_lagrangian(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], ŷ: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_augmented_lagrangian(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> tuple[float, numpy.ndarray[numpy.float64[m, 1]]]
- eval_augmented_lagrangian_and_gradient(*args, **kwargs)
Overloaded function.
eval_augmented_lagrangian_and_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_augmented_lagrangian_and_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> tuple[float, numpy.ndarray[numpy.float64[m, 1]]]
- eval_augmented_lagrangian_gradient(*args, **kwargs)
Overloaded function.
eval_augmented_lagrangian_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_augmented_lagrangian_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_augmented_lagrangian_hessian(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) tuple[object, alpaqa._alpaqa.Symmetry]
Returns the Hessian of the augmented Lagrangian and its symmetry.
- eval_augmented_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_constraints(*args, **kwargs)
Overloaded function.
eval_constraints(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], gx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_constraints(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_constraints_gradient_product(*args, **kwargs)
Overloaded function.
eval_constraints_gradient_product(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_constraints_gradient_product(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_constraints_jacobian(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) tuple[object, alpaqa._alpaqa.Symmetry]
Returns the Jacobian of the constraints and its symmetry.
- eval_grad_gi(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_inactive_indices_res_lna(*args, **kwargs)
Overloaded function.
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]]
- eval_lagrangian_gradient(*args, **kwargs)
Overloaded function.
eval_lagrangian_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_L: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_lagrangian_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_lagrangian_hessian(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) tuple[object, alpaqa._alpaqa.Symmetry]
Returns the Hessian of the Lagrangian and its symmetry.
- eval_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_objective(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) float
- eval_objective_and_constraints(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], g: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) float
- eval_objective_and_gradient(*args, **kwargs)
Overloaded function.
eval_objective_and_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_objective_and_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) -> tuple
- eval_objective_gradient(*args, **kwargs)
Overloaded function.
eval_objective_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_objective_gradient(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_objective_gradient_and_constraints_gradient_product(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_f: numpy.ndarray[numpy.float64[m, 1], flags.writeable], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_projecting_difference_constraints(*args, **kwargs)
Overloaded function.
eval_projecting_difference_constraints(self: alpaqa._alpaqa.float64.Problem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_projecting_difference_constraints(self: alpaqa._alpaqa.float64.Problem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_projection_multipliers(self: alpaqa._alpaqa.float64.Problem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None
- eval_proximal_gradient_step(*args, **kwargs)
Overloaded function.
eval_proximal_gradient_step(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_proximal_gradient_step(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float]
- get_general_bounds(self: alpaqa._alpaqa.float64.Problem) alpaqa._alpaqa.float64.Box
- get_variable_bounds(self: alpaqa._alpaqa.float64.Problem) alpaqa._alpaqa.float64.Box
- property num_constraints
Number of general constraints, dimension of \(g(x)\)
- property num_variables
Number of decision variables, dimension of \(x\)
- provides_check(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_augmented_lagrangian(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_augmented_lagrangian_and_gradient(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_augmented_lagrangian_gradient(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_augmented_lagrangian_hessian(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_augmented_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_constraints_jacobian(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_grad_gi(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_lagrangian_gradient(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_lagrangian_hessian(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_objective_and_constraints(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_objective_and_gradient(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_objective_gradient_and_constraints_gradient_product(self: alpaqa._alpaqa.float64.Problem) bool
- provides_get_augmented_lagrangian_hessian_sparsity(self: alpaqa._alpaqa.float64.Problem) bool
- provides_get_constraints_jacobian_sparsity(self: alpaqa._alpaqa.float64.Problem) bool
- provides_get_general_bounds(self: alpaqa._alpaqa.float64.Problem) bool
- provides_get_lagrangian_hessian_sparsity(self: alpaqa._alpaqa.float64.Problem) bool
- provides_get_variable_bounds(self: alpaqa._alpaqa.float64.Problem) bool
- class alpaqa.CUTEstProblem
C++ documentation:
alpaqa::CUTEstProblem
See
alpaqa.Problem
for the full documentation.- class Report
- class Calls
- __init__(*args, **kwargs)
- property constraints
- property constraints_grad
- property constraints_hess
- property hessian_times_vector
- property objective
- property objective_grad
- property objective_hess
- __init__(*args, **kwargs)
- property calls
- property time
- property time_setup
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: alpaqa._alpaqa.float64.CUTEstProblem, so_filename: str, outsdiff_filename: str = None, sparse: bool = False, dl_flags: alpaqa._alpaqa.DynamicLoadFlags = …) -> None
Load a CUTEst problem from the given shared library and OUTSDIF.d file
__init__(self: alpaqa._alpaqa.float64.CUTEstProblem, other: alpaqa._alpaqa.float64.CUTEstProblem) -> None
Create a copy
- check(self: alpaqa._alpaqa.float64.CUTEstProblem) None
- eval_augmented_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_constraints(*args, **kwargs)
Overloaded function.
eval_constraints(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], gx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_constraints(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_constraints_gradient_product(*args, **kwargs)
Overloaded function.
eval_constraints_gradient_product(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_constraints_gradient_product(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_constraints_jacobian(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) tuple[object, alpaqa._alpaqa.Symmetry]
Returns the Jacobian of the constraints and its symmetry.
- eval_grad_gi(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_inactive_indices_res_lna(*args, **kwargs)
Overloaded function.
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.CUTEstProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.CUTEstProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]]
- eval_lagrangian_gradient(*args, **kwargs)
Overloaded function.
eval_lagrangian_gradient(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_L: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_lagrangian_gradient(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_lagrangian_hessian(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) tuple[object, alpaqa._alpaqa.Symmetry]
Returns the Hessian of the Lagrangian and its symmetry.
- eval_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_objective(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) float
- eval_objective_and_constraints(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], g: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) float
- eval_objective_and_gradient(*args, **kwargs)
Overloaded function.
eval_objective_and_gradient(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_objective_and_gradient(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> tuple
- eval_objective_gradient(*args, **kwargs)
Overloaded function.
eval_objective_gradient(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_objective_gradient(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_projecting_difference_constraints(*args, **kwargs)
Overloaded function.
eval_projecting_difference_constraints(self: alpaqa._alpaqa.float64.CUTEstProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_projecting_difference_constraints(self: alpaqa._alpaqa.float64.CUTEstProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_projection_multipliers(self: alpaqa._alpaqa.float64.CUTEstProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None
- eval_proximal_gradient_step(*args, **kwargs)
Overloaded function.
eval_proximal_gradient_step(self: alpaqa._alpaqa.float64.CUTEstProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_proximal_gradient_step(self: alpaqa._alpaqa.float64.CUTEstProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float]
- format_report(self: alpaqa._alpaqa.float64.CUTEstProblem, report: alpaqa._alpaqa.float64.CUTEstProblem.Report | None = None) str
Convert the given report to a string.
- property general_bounds
General constraint bounds, \(g(x) \in D\)
- get_general_bounds(self: alpaqa._alpaqa.float64.CUTEstProblem) alpaqa._alpaqa.float64.Box
- get_report(self: alpaqa._alpaqa.float64.CUTEstProblem) alpaqa._alpaqa.float64.CUTEstProblem.Report
Get the report generated by cutest_creport.
- get_variable_bounds(self: alpaqa._alpaqa.float64.CUTEstProblem) alpaqa._alpaqa.float64.Box
- property l1_reg
\(\ell_1\) regularization on \(x\)
- property name
CUTEst problem name.
- property num_constraints
Number of general constraints, dimension of \(g(x)\)
- property num_variables
Number of decision variables, dimension of \(x\)
- property penalty_alm_split
Index between quadratic penalty and augmented Lagrangian constraints
- provides_get_variable_bounds(self: alpaqa._alpaqa.float64.CUTEstProblem) bool
- resize(self: alpaqa._alpaqa.float64.BoxConstrProblem, num_variables: int, num_constraints: int) None
- property variable_bounds
Box constraints on the decision variables, \(x\in C\)
- property x0
Initial guess for decision variables.
- property y0
Initial guess for multipliers.
- class alpaqa.DLProblem
C++ documentation:
alpaqa::dl::DLProblem
See
alpaqa.Problem
for the full documentation.- __init__(*args, **kwargs)
Overloaded function.
__init__(self: alpaqa._alpaqa.float64.DLProblem, so_filename: str, *args, function_name: str = ‘register_alpaqa_problem’, user_param_str: bool = False, **kwargs) -> None
Load a problem from the given shared library file. By default, extra arguments are passed to the problem as a void pointer to a
std::tuple<pybind11::args, pybind11::kwargs>
. If the keyword argumentuser_param_str=True
is used, theargs
is converted to a list of strings, and passed as a void pointer to astd::span<std::string_view>
.__init__(self: alpaqa._alpaqa.float64.DLProblem, other: alpaqa._alpaqa.float64.DLProblem) -> None
Create a copy
- call_extra_func(self: alpaqa._alpaqa.float64.DLProblem, name: str, *args, **kwargs) object
Call the given extra member function registered by the problem, with the signature
pybind11::object(pybind11::args, pybind11::kwargs)
.
- check(self: alpaqa._alpaqa.float64.DLProblem) None
- eval_augmented_lagrangian(*args, **kwargs)
Overloaded function.
eval_augmented_lagrangian(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], ŷ: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_augmented_lagrangian(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> tuple[float, numpy.ndarray[numpy.float64[m, 1]]]
- eval_augmented_lagrangian_and_gradient(*args, **kwargs)
Overloaded function.
eval_augmented_lagrangian_and_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_augmented_lagrangian_and_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> tuple[float, numpy.ndarray[numpy.float64[m, 1]]]
- eval_augmented_lagrangian_gradient(*args, **kwargs)
Overloaded function.
eval_augmented_lagrangian_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_augmented_lagrangian_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_augmented_lagrangian_hessian(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) tuple[object, alpaqa._alpaqa.Symmetry]
Returns the Hessian of the augmented Lagrangian and its symmetry.
- eval_augmented_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_constraints(*args, **kwargs)
Overloaded function.
eval_constraints(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], gx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_constraints(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_constraints_gradient_product(*args, **kwargs)
Overloaded function.
eval_constraints_gradient_product(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_constraints_gradient_product(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_constraints_jacobian(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) tuple[object, alpaqa._alpaqa.Symmetry]
Returns the Jacobian of the constraints and its symmetry.
- eval_grad_gi(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_inactive_indices_res_lna(*args, **kwargs)
Overloaded function.
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.DLProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.DLProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]]
- eval_lagrangian_gradient(*args, **kwargs)
Overloaded function.
eval_lagrangian_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_L: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_lagrangian_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_lagrangian_hessian(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) tuple[object, alpaqa._alpaqa.Symmetry]
Returns the Hessian of the Lagrangian and its symmetry.
- eval_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_objective(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) float
- eval_objective_and_constraints(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], g: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) float
- eval_objective_and_gradient(*args, **kwargs)
Overloaded function.
eval_objective_and_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_objective_and_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> tuple
- eval_objective_gradient(*args, **kwargs)
Overloaded function.
eval_objective_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_objective_gradient(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_objective_gradient_and_constraints_gradient_product(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_f: numpy.ndarray[numpy.float64[m, 1], flags.writeable], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_projecting_difference_constraints(*args, **kwargs)
Overloaded function.
eval_projecting_difference_constraints(self: alpaqa._alpaqa.float64.DLProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_projecting_difference_constraints(self: alpaqa._alpaqa.float64.DLProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_projection_multipliers(self: alpaqa._alpaqa.float64.DLProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None
- eval_proximal_gradient_step(*args, **kwargs)
Overloaded function.
eval_proximal_gradient_step(self: alpaqa._alpaqa.float64.DLProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_proximal_gradient_step(self: alpaqa._alpaqa.float64.DLProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float]
- property general_bounds
General constraint bounds, \(g(x) \in D\)
- get_general_bounds(self: alpaqa._alpaqa.float64.DLProblem) alpaqa._alpaqa.float64.Box
- get_variable_bounds(self: alpaqa._alpaqa.float64.DLProblem) alpaqa._alpaqa.float64.Box
- property l1_reg
\(\ell_1\) regularization on \(x\)
- property num_constraints
Number of general constraints, dimension of \(g(x)\)
- property num_variables
Number of decision variables, dimension of \(x\)
- property penalty_alm_split
Index between quadratic penalty and augmented Lagrangian constraints
- provides_eval_augmented_lagrangian(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_augmented_lagrangian_and_gradient(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_augmented_lagrangian_gradient(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_augmented_lagrangian_hessian(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_augmented_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_constraints_jacobian(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_grad_gi(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_lagrangian_gradient(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_lagrangian_hessian(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_lagrangian_hessian_product(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_objective_and_constraints(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_objective_and_gradient(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_eval_objective_gradient_and_constraints_gradient_product(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_get_augmented_lagrangian_hessian_sparsity(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_get_constraints_jacobian_sparsity(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_get_general_bounds(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_get_lagrangian_hessian_sparsity(self: alpaqa._alpaqa.float64.DLProblem) bool
- provides_get_variable_bounds(self: alpaqa._alpaqa.float64.DLProblem) bool
- resize(self: alpaqa._alpaqa.float64.BoxConstrProblem, num_variables: int, num_constraints: int) None
- property variable_bounds
Box constraints on the decision variables, \(x\in C\)