![]() |
SuperSCS
1.3.2
|
The algorithm is terminated when an approximate optimal solution is found based on its relative primal and dual residuals and relative duality gap. At iteration \nu let {u}^\nu {}={} ({\chi}^{\nu}, {\psi}^{\nu}, {\tau}^{\nu}) , \bar{u}^\nu {}={} (\bar{\chi}^{\nu}, \bar{\psi}^{\nu}, \bar{\tau}^{\nu}) and \tilde{u}^\nu {}={} (\tilde{\chi}^{\nu}, \tilde{\psi}^{\nu}, \tilde{\tau}^{\nu}) . We compute \bar{\varsigma}^\nu {}={} \bar{\psi}^{\nu} {}-{} 2\tilde{\psi}^{\nu} {}+{} \psi^\nu. Let us also define the triplet ( x^\nu, y^\nu, s^\nu ) {}={} ( \bar{\chi}^{\nu}/\bar{\tau}^{\nu}, \bar{\psi}^{\nu}/\bar{\tau}^{\nu}, \bar{\varsigma}^{\nu}/\bar{\tau}^{\nu} ) , which serves as the candidate primal-dual solution at iteration \nu. The relative primal residual is
\begin{eqnarray*} \mathrm{pr}^{\nu} {}={} \frac { \| A\bar{x}^\nu + \bar{s}^\nu - b \| } { 1+\|b\| } \end{eqnarray*}
The relative dual residual is
\begin{eqnarray*} \mathrm{dr}^\nu {}={} \frac { \| A^*\bar{y}^\nu + c \| } { 1+\|c\| } \end{eqnarray*}
The relative duality gap is defined as
\begin{eqnarray*} \mathrm{gap}^\nu {}={} \frac { |\langle c, \bar{x}^{\nu}\rangle {}+{} \langle b,\bar{y}^{\nu}\rangle| } { 1 + |\langle c, \bar{x}^{\nu}\rangle| + |\langle b, \bar{y}^{\nu}\rangle| } \end{eqnarray*}
If \mathrm{pr}^{\nu}, \mathrm{dr}^{\nu} and \mathrm{gap}^{\nu} are all below a specified tolerance \epsilon>0, then we conclude that that the conic optimization problem is feasible, the algorithm is terminated and the triplet ( x^\nu, y^\nu, s^\nu ) is an approximate solution.
The unboundedness and infeasibility certificates are derined from the theorem of the alternative. The relative infeasibility certificate is defined as
\begin{eqnarray*} \mathrm{ic}^{\nu} {}={} \begin{cases} { \left\|b\right\| \left\|A^*\bar{y}^{\nu}\right\| } / { \langle b, \bar{y}^{\nu}\rangle }, &\text{ if } \langle b, \bar{y}^{\nu}\rangle{}<{}0\\ +\infty,&\text{ else} \end{cases} \end{eqnarray*}
Likewise, the relative unboundedness certificate is defined as
\begin{eqnarray*} \mathrm{uc}^{\nu} {}={} \begin{cases} { \left\|c\right\| \left\|A\bar{x}^{\nu} + \bar{s}^{\nu}\right\| } / { \langle c, \bar{x}^{\nu}\rangle }, &\text{ if } \langle c, \bar{x}^{\nu}\rangle {}<{} 0\\ +\infty,&\text{ else} \end{cases} \end{eqnarray*}
Provided that \bar{u}^{\nu} is not a feasible \epsilon-optimal point, it is a certificate of unboundedness if \mathrm{uc}^{\nu}<\epsilon and it is a certificate of infeasibility if \mathrm{ic}^{\nu}<\epsilon.
SuperSCS is terminated if: