151 auto &vtable = *
this;
191 vtable.n = p.get_n();
192 vtable.m = p.get_m();
228 using TypeErased::TypeErased;
231 using TypeErased::call;
232 using TypeErased::self;
233 using TypeErased::vtable;
236 template <
class T,
class...
Args>
575 return vtable.eval_inactive_indices_res_lna != vtable.default_eval_inactive_indices_res_lna;
580 return vtable.eval_jac_g != vtable.default_eval_jac_g;
585 return vtable.get_jac_g_sparsity != vtable.default_get_jac_g_sparsity;
590 return vtable.eval_grad_gi != vtable.default_eval_grad_gi;
595 return vtable.eval_hess_L_prod != vtable.default_eval_hess_L_prod;
600 return vtable.eval_hess_L != vtable.default_eval_hess_L;
605 return vtable.get_hess_L_sparsity != vtable.default_get_hess_L_sparsity;
610 return vtable.eval_hess_ψ_prod != vtable.default_eval_hess_ψ_prod;
615 return vtable.eval_hess_ψ != vtable.default_eval_hess_ψ;
620 return vtable.get_hess_ψ_sparsity != vtable.default_get_hess_ψ_sparsity;
625 return vtable.eval_f_grad_f != vtable.default_eval_f_grad_f;
630 return vtable.eval_f_g != vtable.default_eval_f_g;
635 return vtable.eval_grad_f_grad_g_prod != vtable.default_eval_grad_f_grad_g_prod;
640 return vtable.eval_grad_L != vtable.default_eval_grad_L;
648 return vtable.eval_grad_ψ != vtable.default_eval_grad_ψ;
653 return vtable.eval_ψ_grad_ψ != vtable.default_eval_ψ_grad_ψ;
658 return vtable.get_box_C != vtable.default_get_box_C;
663 return vtable.get_box_D != vtable.default_get_box_D;
669 return vtable.get_name != vtable.default_get_name;
679 return provides_eval_hess_ψ_prod() || (vtable.m == 0 && provides_eval_hess_L_prod());
683 return provides_eval_hess_ψ() || (vtable.m == 0 && provides_eval_hess_L());
722template <
class Tref,
class Allocator>
727template <Config Conf,
class Allocator>
731template <Config Conf,
class Allocator>
736template <Config Conf,
class Allocator>
738 return call(vtable.eval_proj_diff_g, z, e);
740template <Config Conf,
class Allocator>
742 return call(vtable.eval_proj_multipliers, y,
M);
744template <Config Conf,
class Allocator>
747 return call(vtable.eval_prox_grad_step, γ, x, grad_ψ, x̂, p);
749template <Config Conf,
class Allocator>
754 return call(vtable.eval_inactive_indices_res_lna, γ, x, grad_ψ,
J);
756template <Config Conf,
class Allocator>
758 return call(vtable.eval_f, x);
760template <Config Conf,
class Allocator>
762 return call(vtable.eval_grad_f, x,
grad_fx);
764template <Config Conf,
class Allocator>
766 return call(vtable.eval_g, x,
gx);
768template <Config Conf,
class Allocator>
770 return call(vtable.eval_grad_g_prod, x, y,
grad_gxy);
772template <Config Conf,
class Allocator>
774 return call(vtable.eval_grad_gi, x, i, grad_gi);
776template <Config Conf,
class Allocator>
778 return call(vtable.eval_jac_g, x,
J_values);
780template <Config Conf,
class Allocator>
782 return call(vtable.get_jac_g_sparsity);
784template <Config Conf,
class Allocator>
787 return call(vtable.eval_hess_L_prod, x, y,
scale,
v,
Hv);
789template <Config Conf,
class Allocator>
794template <Config Conf,
class Allocator>
796 return call(vtable.get_hess_L_sparsity);
798template <Config Conf,
class Allocator>
801 return call(vtable.eval_hess_ψ_prod, x, y, Σ,
scale,
v,
Hv);
803template <Config Conf,
class Allocator>
808template <Config Conf,
class Allocator>
810 return call(vtable.get_hess_ψ_sparsity);
812template <Config Conf,
class Allocator>
814 return call(vtable.eval_f_grad_f, x,
grad_fx);
816template <Config Conf,
class Allocator>
818 return call(vtable.eval_f_g, x, g);
820template <Config Conf,
class Allocator>
823 return call(vtable.eval_grad_f_grad_g_prod, x, y, grad_f,
grad_gxy);
825template <Config Conf,
class Allocator>
828 return call(vtable.eval_grad_L, x, y, grad_L, work_n);
830template <Config Conf,
class Allocator>
832 return call(vtable.eval_ψ, x, y, Σ, ŷ);
834template <Config Conf,
class Allocator>
837 return call(vtable.eval_grad_ψ, x, y, Σ, grad_ψ, work_n, work_m);
839template <Config Conf,
class Allocator>
842 return call(vtable.eval_ψ_grad_ψ, x, y, Σ, grad_ψ, work_n, work_m);
844template <Config Conf,
class Allocator>
846 return call(vtable.calc_ŷ_dᵀŷ,
g_ŷ, y, Σ);
848template <Config Conf,
class Allocator>
850 return call(vtable.get_box_C);
852template <Config Conf,
class Allocator>
854 return call(vtable.get_box_D);
856template <Config Conf,
class Allocator>
858 return call(vtable.check);
860template <Config Conf,
class Allocator>
862 return call(vtable.get_name);
868template <Config Conf>
The main polymorphic minimization problem interface.
bool provides_eval_hess_L() const
Returns true if the problem provides an implementation of eval_hess_L.
real_t eval_prox_grad_step(real_t γ, crvec x, crvec grad_ψ, rvec x̂, rvec p) const
[Required] Function that computes a proximal gradient step.
std::string get_name() const
[Optional] Get a descriptive name for the problem.
real_t eval_ψ_grad_ψ(crvec x, crvec y, crvec Σ, rvec grad_ψ, rvec work_n, rvec work_m) const
[Optional] Calculate both ψ(x) and its gradient ∇ψ(x).
bool provides_get_hess_L_sparsity() const
Returns true if the problem provides an implementation of get_hess_L_sparsity.
const Box & get_box_D() const
[Optional] Get the rectangular constraint set of the general constraint function, .
void eval_grad_gi(crvec x, index_t i, rvec grad_gi) const
[Optional] Function that evaluates the gradient of one specific constraint,
bool provides_eval_hess_ψ_prod() const
Returns true if the problem provides an implementation of eval_hess_ψ_prod.
bool provides_eval_ψ_grad_ψ() const
Returns true if the problem provides a specialized implementation of eval_ψ_grad_ψ,...
bool provides_get_box_C() const
Returns true if the problem provides an implementation of get_box_C.
void eval_jac_g(crvec x, rvec J_values) const
[Optional] Function that evaluates the nonzero values of the Jacobian matrix of the constraints,
Sparsity get_jac_g_sparsity() const
[Optional] Function that returns (a view of) the sparsity pattern of the Jacobian of the constraints.
real_t eval_f_g(crvec x, rvec g) const
[Optional] Evaluate both and .
Sparsity get_hess_ψ_sparsity() const
[Optional] Function that returns (a view of) the sparsity pattern of the Hessian of the augmented Lag...
bool provides_eval_jac_g() const
Returns true if the problem provides an implementation of eval_jac_g.
bool provides_check() const
Returns true if the problem provides an implementation of check.
length_t get_n() const
[Required] Number of decision variables.
void eval_hess_ψ(crvec x, crvec y, crvec Σ, real_t scale, rvec H_values) const
[Optional] Function that evaluates the nonzero values of the Hessian of the augmented Lagrangian,
Sparsity get_hess_L_sparsity() const
[Optional] Function that returns (a view of) the sparsity pattern of the Hessian of the Lagrangian.
void check() const
[Optional] Check that the problem formulation is well-defined, the dimensions match,...
length_t get_m() const
[Required] Number of constraints.
real_t eval_ψ(crvec x, crvec y, crvec Σ, rvec ŷ) const
[Optional] Calculate both ψ(x) and the vector ŷ that can later be used to compute ∇ψ.
bool provides_eval_inactive_indices_res_lna() const
Returns true if the problem provides an implementation of eval_inactive_indices_res_lna.
bool provides_get_name() const
Returns true if the problem provides an implementation of get_name.
void eval_grad_L(crvec x, crvec y, rvec grad_L, rvec work_n) const
[Optional] Evaluate the gradient of the Lagrangian
void eval_grad_f_grad_g_prod(crvec x, crvec y, rvec grad_f, rvec grad_gxy) const
[Optional] Evaluate both and .
bool provides_eval_grad_f_grad_g_prod() const
Returns true if the problem provides a specialized implementation of eval_grad_f_grad_g_prod,...
static TypeErasedProblem make(Args &&...args)
index_t eval_inactive_indices_res_lna(real_t γ, crvec x, crvec grad_ψ, rindexvec J) const
[Optional] Function that computes the inactive indices for the evaluation of the linear Newton appro...
bool provides_get_hess_ψ_sparsity() const
Returns true if the problem provides an implementation of get_hess_ψ_sparsity.
bool provides_eval_hess_L_prod() const
Returns true if the problem provides an implementation of eval_hess_L_prod.
bool supports_eval_hess_ψ_prod() const
Returns true if eval_hess_ψ_prod can be called.
bool provides_get_jac_g_sparsity() const
Returns true if the problem provides an implementation of get_jac_g_sparsity.
real_t eval_f_grad_f(crvec x, rvec grad_fx) const
[Optional] Evaluate both and its gradient, .
bool provides_eval_f_grad_f() const
Returns true if the problem provides a specialized implementation of eval_f_grad_f,...
bool supports_eval_hess_ψ() const
Returns true if eval_hess_ψ can be called.
void eval_grad_g_prod(crvec x, crvec y, rvec grad_gxy) const
[Required] Function that evaluates the gradient of the constraints times a vector,
void eval_hess_L_prod(crvec x, crvec y, real_t scale, crvec v, rvec Hv) const
[Optional] Function that evaluates the Hessian of the Lagrangian multiplied by a vector,
bool provides_eval_grad_gi() const
Returns true if the problem provides an implementation of eval_grad_gi.
void eval_proj_multipliers(rvec y, real_t M) const
[Required] Function that projects the Lagrange multipliers for ALM.
bool provides_eval_f_g() const
Returns true if the problem provides a specialized implementation of eval_f_g, false if it uses the d...
void eval_grad_f(crvec x, rvec grad_fx) const
[Required] Function that evaluates the gradient of the cost,
real_t eval_f(crvec x) const
[Required] Function that evaluates the cost,
bool provides_eval_grad_L() const
Returns true if the problem provides a specialized implementation of eval_grad_L, false if it uses th...
bool provides_eval_grad_ψ() const
Returns true if the problem provides a specialized implementation of eval_grad_ψ, false if it uses th...
void eval_g(crvec x, rvec gx) const
[Required] Function that evaluates the constraints,
void eval_hess_L(crvec x, crvec y, real_t scale, rvec H_values) const
[Optional] Function that evaluates the nonzero values of the Hessian of the Lagrangian,
bool provides_eval_hess_ψ() const
Returns true if the problem provides an implementation of eval_hess_ψ.
real_t calc_ŷ_dᵀŷ(rvec g_ŷ, crvec y, crvec Σ) const
Given g(x), compute the intermediate results ŷ and dᵀŷ that can later be used to compute ψ(x) and ∇ψ(...
bool provides_get_box_D() const
Returns true if the problem provides an implementation of get_box_D.
const Box & get_box_C() const
[Optional] Get the rectangular constraint set of the decision variables, .
void eval_proj_diff_g(crvec z, rvec e) const
[Required] Function that evaluates the difference between the given point and its projection onto th...
void eval_grad_ψ(crvec x, crvec y, crvec Σ, rvec grad_ψ, rvec work_n, rvec work_m) const
[Optional] Calculate the gradient ∇ψ(x).
bool provides_eval_ψ() const
Returns true if the problem provides a specialized implementation of eval_ψ, false if it uses the def...
void eval_hess_ψ_prod(crvec x, crvec y, crvec Σ, real_t scale, crvec v, rvec Hv) const
[Optional] Function that evaluates the Hessian of the augmented Lagrangian multiplied by a vector,
Class for polymorphism through type erasure.
#define USING_ALPAQA_CONFIG(Conf)
#define ALPAQA_IF_QUADF(...)
#define ALPAQA_IF_LONGD(...)
#define ALPAQA_IF_FLOAT(...)
#define ALPAQA_EXPORT_EXTERN_TEMPLATE(...)
void print_provided_functions(std::ostream &os, const TypeErasedProblem< Conf > &problem)
typename Conf::real_t real_t
typename Conf::rindexvec rindexvec
typename Conf::index_t index_t
typename Conf::length_t length_t
typename Conf::crvec crvec
#define ALPAQA_TE_OPTIONAL_METHOD(vtable, type, member, instance)
#define ALPAQA_TE_REQUIRED_METHOD(vtable, type, member)
Double-precision double configuration.
Single-precision float configuration.
long double configuration.
Struct containing function pointers to all problem functions (like the objective and constraint funct...
optional_function_t< void() const > check
static std::string default_get_name(const void *, const ProblemVTable &)
optional_function_t< Sparsity() const > get_hess_ψ_sparsity
static real_t default_eval_ψ(const void *self, crvec x, crvec y, crvec Σ, rvec ŷ, const ProblemVTable &vtable)
required_function_t< void(crvec x, rvec grad_fx) const > eval_grad_f
required_function_t< void(rvec y, real_t M) const > eval_proj_multipliers
optional_function_t< Sparsity() const > get_hess_L_sparsity
required_function_t< real_t(real_t γ, crvec x, crvec grad_ψ, rvec x̂, rvec p) const > eval_prox_grad_step
optional_function_t< void(crvec x, index_t i, rvec grad_gi) const > eval_grad_gi
static void default_eval_hess_L_prod(const void *, crvec, crvec, real_t, crvec, rvec, const ProblemVTable &)
required_function_t< real_t(crvec x) const > eval_f
static void default_eval_hess_ψ_prod(const void *self, crvec x, crvec y, crvec, real_t scale, crvec v, rvec Hv, const ProblemVTable &vtable)
optional_function_t< void(crvec x, crvec y, crvec Σ, rvec grad_ψ, rvec work_n, rvec work_m) const > eval_grad_ψ
static void default_eval_jac_g(const void *, crvec, rvec, const ProblemVTable &)
optional_function_t< void(crvec x, rvec J_values) const > eval_jac_g
required_function_t< void(crvec z, rvec e) const > eval_proj_diff_g
optional_function_t< real_t(crvec x, rvec g) const > eval_f_g
optional_function_t< Sparsity() const > get_jac_g_sparsity
optional_function_t< real_t(crvec x, crvec y, crvec Σ, rvec ŷ) const > eval_ψ
static void default_eval_grad_gi(const void *, crvec, index_t, rvec, const ProblemVTable &)
required_function_t< void(crvec x, rvec gx) const > eval_g
util::BasicVTable::optional_function_t< F, ProblemVTable > optional_function_t
static void default_eval_grad_ψ(const void *self, crvec x, crvec y, crvec Σ, rvec grad_ψ, rvec work_n, rvec work_m, const ProblemVTable &vtable)
optional_function_t< void(crvec x, crvec y, rvec grad_L, rvec work_n) const > eval_grad_L
static const Box & default_get_box_C(const void *, const ProblemVTable &)
alpaqa::Sparsity< config_t > Sparsity
static void default_eval_grad_L(const void *self, crvec x, crvec y, rvec grad_L, rvec work_n, const ProblemVTable &vtable)
optional_function_t< const Box &() const > get_box_D
static const Box & default_get_box_D(const void *, const ProblemVTable &)
optional_function_t< void(crvec x, crvec y, real_t scale, crvec v, rvec Hv) const > eval_hess_L_prod
static Sparsity default_get_jac_g_sparsity(const void *, const ProblemVTable &)
optional_function_t< real_t(crvec x, crvec y, crvec Σ, rvec grad_ψ, rvec work_n, rvec work_m) const > eval_ψ_grad_ψ
optional_function_t< void(crvec x, crvec y, real_t scale, rvec H_values) const > eval_hess_L
static void default_eval_hess_ψ(const void *self, crvec x, crvec y, crvec, real_t scale, rvec H_values, const ProblemVTable &vtable)
static real_t default_eval_f_g(const void *self, crvec x, rvec g, const ProblemVTable &vtable)
required_function_t< void(crvec x, crvec y, rvec grad_gxy) const > eval_grad_g_prod
static index_t default_eval_inactive_indices_res_lna(const void *, real_t, crvec, crvec, rindexvec, const ProblemVTable &)
static void default_check(const void *, const ProblemVTable &)
optional_function_t< real_t(crvec x, rvec grad_fx) const > eval_f_grad_f
static void default_eval_hess_L(const void *, crvec, crvec, real_t, rvec, const ProblemVTable &)
optional_function_t< void(crvec x, crvec y, rvec grad_f, rvec grad_gxy) const > eval_grad_f_grad_g_prod
static real_t calc_ŷ_dᵀŷ(const void *self, rvec g_ŷ, crvec y, crvec Σ, const ProblemVTable &vtable)
optional_function_t< std::string() const > get_name
static void default_eval_grad_f_grad_g_prod(const void *self, crvec x, crvec y, rvec grad_f, rvec grad_gxy, const ProblemVTable &vtable)
static real_t default_eval_f_grad_f(const void *self, crvec x, rvec grad_fx, const ProblemVTable &vtable)
static Sparsity default_get_hess_L_sparsity(const void *, const ProblemVTable &)
static Sparsity default_get_hess_ψ_sparsity(const void *, const ProblemVTable &)
optional_function_t< index_t(real_t γ, crvec x, crvec grad_ψ, rindexvec J) const > eval_inactive_indices_res_lna
optional_function_t< void(crvec x, crvec y, crvec Σ, real_t scale, rvec H_values) const > eval_hess_ψ
static real_t default_eval_ψ_grad_ψ(const void *self, crvec x, crvec y, crvec Σ, rvec grad_ψ, rvec work_n, rvec work_m, const ProblemVTable &vtable)
optional_function_t< void(crvec x, crvec y, crvec Σ, real_t scale, crvec v, rvec Hv) const > eval_hess_ψ_prod
optional_function_t< const Box &() const > get_box_C
Stores any of the supported sparsity patterns.
Struct that stores the size of a polymorphic object, as well as pointers to functions to copy,...
typename optional_function< F, VTable >::type optional_function_t
An optional function includes a void pointer to self, the arguments of F, and an additional reference...
typename required_function< F >::type required_function_t
A required function includes a void pointer to self, in addition to the arguments of F.