Python API Reference#
Index#
Augmented Lagrangian and PANOC solvers for nonconvex numerical optimization.
- class alpaqa.ALMParams#
- C++ documentation: - alpaqa::ALMParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.ALMParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.ALMParams, **kwargs) -> None 
 
 - property dual_tolerance#
 - property initial_penalty#
 - property initial_penalty_factor#
 - property initial_tolerance#
 - property max_iter#
 - property max_multiplier#
 - property max_penalty#
 - property max_time#
 - property min_penalty#
 - property penalty_update_factor#
 - property print_interval#
 - property print_precision#
 - property rel_penalty_increase_threshold#
 - property single_penalty_factor#
 - to_dict(self: alpaqa._alpaqa.float64.ALMParams) dict#
 - property tolerance#
 - property tolerance_update_factor#
 
- class alpaqa.ALMSolver#
- Main augmented Lagrangian solver. - C++ documentation: - alpaqa::ALMSolver- __call__(self: alpaqa._alpaqa.float64.ALMSolver, problem: alpaqa._alpaqa.float64.Problem | alpaqa._alpaqa.float64.ControlProblem, x: numpy.ndarray[numpy.float64[m, 1]] | None = None, y: numpy.ndarray[numpy.float64[m, 1]] | None = None, *, asynchronous: bool = True, suppress_interrupt: bool = False) tuple#
- Solve. - Parameters:
- problem – Problem to solve. 
- x – Initial guess for decision variables \(x\) 
- y – Initial guess for Lagrange multipliers \(y\) 
- asynchronous – Release the GIL and run the solver on a separate thread 
- suppress_interrupt – If the solver is interrupted by a - KeyboardInterrupt, don’t propagate this exception back to the Python interpreter, but stop the solver early, and return a solution with the status set to- alpaqa.SolverStatus.Interrupted.
 
- Returns:
- Solution \(x\) 
- Lagrange multipliers \(y\) at the solution 
- Statistics 
 
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.ALMSolver, other: alpaqa._alpaqa.float64.ALMSolver) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.ALMSolver) -> None 
 - Build an ALM solver using Structured PANOC as inner solver. - __init__(self: alpaqa._alpaqa.float64.ALMSolver, inner_solver: alpaqa._alpaqa.float64.InnerSolver) -> None 
 - Build an ALM solver using the given inner solver. - __init__(self: alpaqa._alpaqa.float64.ALMSolver, inner_solver: alpaqa._alpaqa.float64.InnerOCPSolver) -> None 
 - Build an ALM solver using the given inner solver. - __init__(self: alpaqa._alpaqa.float64.ALMSolver, alm_params: Union[alpaqa._alpaqa.float64.ALMParams, dict], inner_solver: alpaqa._alpaqa.float64.InnerSolver) -> None 
 - Build an ALM solver using the given inner solver. - __init__(self: alpaqa._alpaqa.float64.ALMSolver, alm_params: Union[alpaqa._alpaqa.float64.ALMParams, dict], inner_solver: alpaqa._alpaqa.float64.InnerOCPSolver) -> None 
 - Build an ALM solver using the given inner solver. 
 - property inner_solver#
 - property name#
 - property params#
 - stop(self: alpaqa._alpaqa.float64.ALMSolver) None#
 
- class alpaqa.AndersonAccel#
- C++ documentation - alpaqa::AndersonAccel- class Params#
- C++ documentation - alpaqa::AndersonAccelParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.AndersonAccel.Params, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.AndersonAccel.Params, **kwargs) -> None 
 
 - property memory#
 - property min_div_fac#
 - to_dict(self: alpaqa._alpaqa.float64.AndersonAccel.Params) dict#
 
 - property Q#
 - property R#
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.AndersonAccel, params: Union[alpaqa._alpaqa.float64.AndersonAccel.Params, dict]) -> None 
- __init__(self: alpaqa._alpaqa.float64.AndersonAccel, params: Union[alpaqa._alpaqa.float64.AndersonAccel.Params, dict], n: int) -> None 
 
 - compute(*args, **kwargs)#
- Overloaded function. - compute(self: alpaqa._alpaqa.float64.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]], x_k_aa: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- compute(self: alpaqa._alpaqa.float64.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - property current_history#
 - property history#
 - initialize(self: alpaqa._alpaqa.float64.AndersonAccel, g_0: numpy.ndarray[numpy.float64[m, 1]], r_0: numpy.ndarray[numpy.float64[m, 1]]) None#
 - property n#
 - property params#
 - reset(self: alpaqa._alpaqa.float64.AndersonAccel) None#
 - resize(self: alpaqa._alpaqa.float64.AndersonAccel, n: int) None#
 
- class alpaqa.AndersonDirection#
- C++ documentation: - alpaqa::AndersonDirection- class DirectionParams#
- C++ documentation: - alpaqa::AndersonDirection::DirectionParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.AndersonDirection.DirectionParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.AndersonDirection.DirectionParams, **kwargs) -> None 
 
 - property rescale_on_step_size_changes#
 - to_dict(self: alpaqa._alpaqa.float64.AndersonDirection.DirectionParams) dict#
 
 - __init__(self: alpaqa._alpaqa.float64.AndersonDirection, anderson_params: alpaqa._alpaqa.float64.AndersonAccel.Params | dict = {}, direction_params: alpaqa._alpaqa.float64.AndersonDirection.DirectionParams | dict = {}) None#
 - property params#
 
- class alpaqa.Box#
- C++ documentation: - alpaqa::Box- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.Box, other: alpaqa._alpaqa.float64.Box) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.Box, n: int) -> None 
 - Create an \(n\)-dimensional box at with bounds at \(\pm\infty\) (no constraints). - __init__(self: alpaqa._alpaqa.float64.Box, *, lower: numpy.ndarray[numpy.float64[m, 1]], upper: numpy.ndarray[numpy.float64[m, 1]]) -> None 
 - Create a box with the given bounds. 
 - property lowerbound#
 - property upperbound#
 
- class alpaqa.BoxConstrProblem#
- C++ documentation: - alpaqa::BoxConstrProblem- property C#
- Box constraints on \(x\) 
 - property D#
- Box constraints on \(g(x)\) 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.BoxConstrProblem, other: alpaqa._alpaqa.float64.BoxConstrProblem) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.BoxConstrProblem, n: int, m: int) -> None 
 - Parameters:
- n – Number of unknowns 
- m – Number of constraints 
 
 
 - eval_inactive_indices_res_lna(*args, **kwargs)#
- Overloaded function. - eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int 
- eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]] 
 
 - eval_proj_diff_g(*args, **kwargs)#
- Overloaded function. - eval_proj_diff_g(self: alpaqa._alpaqa.float64.BoxConstrProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_proj_diff_g(self: alpaqa._alpaqa.float64.BoxConstrProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_proj_multipliers(self: alpaqa._alpaqa.float64.BoxConstrProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None#
 - eval_prox_grad_step(*args, **kwargs)#
- Overloaded function. - eval_prox_grad_step(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_prox_grad_step(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float] 
 
 - get_box_C(self: alpaqa._alpaqa.float64.BoxConstrProblem) alpaqa._alpaqa.float64.Box#
 - get_box_D(self: alpaqa._alpaqa.float64.BoxConstrProblem) alpaqa._alpaqa.float64.Box#
 - property l1_reg#
- \(\ell_1\) regularization on \(x\) 
 - property m#
- Number of general constraints, dimension of \(g(x)\) 
 - property n#
- Number of decision variables, dimension of \(x\) 
 - property penalty_alm_split#
- Index between quadratic penalty and augmented Lagrangian constraints 
 - resize(self: alpaqa._alpaqa.float64.BoxConstrProblem, n: int, m: int) None#
 
- class alpaqa.CUTEstProblem#
- C++ documentation: - alpaqa::CUTEstProblem- See - alpaqa.Problemfor the full documentation.- class Report#
- class Calls#
- __init__(*args, **kwargs)#
 - property constraints#
 - property constraints_grad#
 - property constraints_hess#
 - property hessian_times_vector#
 - property objective#
 - property objective_grad#
 - property objective_hess#
 
 - __init__(*args, **kwargs)#
 - property calls#
 - property time#
 - property time_setup#
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.CUTEstProblem, so_filename: str, outsdiff_filename: str = None, sparse: bool = False) -> None 
 - Load a CUTEst problem from the given shared library and OUTSDIF.d file - __init__(self: alpaqa._alpaqa.float64.CUTEstProblem, other: alpaqa._alpaqa.float64.CUTEstProblem) -> None 
 - Create a copy 
 - check(self: alpaqa._alpaqa.float64.CUTEstProblem) None#
 - eval_f(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) float#
 - eval_f_g(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], g: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) float#
 - eval_f_grad_f(*args, **kwargs)#
- Overloaded function. - eval_f_grad_f(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_f_grad_f(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> tuple 
 
 - eval_g(*args, **kwargs)#
- Overloaded function. - eval_g(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], gx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_g(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_L(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_L: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_f(*args, **kwargs)#
- Overloaded function. - eval_grad_f(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_f(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_g_prod(*args, **kwargs)#
- Overloaded function. - eval_grad_g_prod(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_g_prod(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_gi(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_hess_L(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Hessian of the Lagrangian and its symmetry. 
 - eval_hess_L_prod(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_inactive_indices_res_lna(*args, **kwargs)#
- Overloaded function. - eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.CUTEstProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int 
- eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.CUTEstProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]] 
 
 - eval_jac_g(self: alpaqa._alpaqa.float64.CUTEstProblem, x: numpy.ndarray[numpy.float64[m, 1]]) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Jacobian of the constraints and its symmetry. 
 - eval_proj_diff_g(*args, **kwargs)#
- Overloaded function. - eval_proj_diff_g(self: alpaqa._alpaqa.float64.CUTEstProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_proj_diff_g(self: alpaqa._alpaqa.float64.CUTEstProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_proj_multipliers(self: alpaqa._alpaqa.float64.CUTEstProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None#
 - eval_prox_grad_step(*args, **kwargs)#
- Overloaded function. - eval_prox_grad_step(self: alpaqa._alpaqa.float64.CUTEstProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_prox_grad_step(self: alpaqa._alpaqa.float64.CUTEstProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float] 
 
 - format_report(self: alpaqa._alpaqa.float64.CUTEstProblem, report: alpaqa._alpaqa.float64.CUTEstProblem.Report | None = None) str#
- Convert the given report to a string. 
 - get_box_C(self: alpaqa._alpaqa.float64.CUTEstProblem) alpaqa._alpaqa.float64.Box#
 - get_box_D(self: alpaqa._alpaqa.float64.CUTEstProblem) alpaqa._alpaqa.float64.Box#
 - get_report(self: alpaqa._alpaqa.float64.CUTEstProblem) alpaqa._alpaqa.float64.CUTEstProblem.Report#
- Get the report generated by cutest_creport. 
 - property m#
- Number of general constraints, dimension of \(g(x)\) 
 - property n#
- Number of decision variables, dimension of \(x\) 
 - property name#
- CUTEst problem name. 
 - provides_get_box_C(self: alpaqa._alpaqa.float64.CUTEstProblem) bool#
 - property x0#
- Initial guess for decision variables. 
 - property y0#
- Initial guess for multipliers. 
 
- class alpaqa.CasADiControlProblem#
- C++ documentation: - alpaqa::CasADiControlProblem- See - alpaqa.ControlProblemfor the full documentation.- property D#
 - property D_N#
 - property N#
 - property U#
 - __init__(self: alpaqa._alpaqa.float64.CasADiControlProblem, other: alpaqa._alpaqa.float64.CasADiControlProblem) None#
- Create a copy 
 - property nc#
 - property nc_N#
 - property nh#
 - property nh_N#
 - property nu#
 - property nx#
 - property param#
- Parameter vector \(p\) of the problem 
 - property x_init#
- Initial state vector \(x^0\) of the problem 
 
- class alpaqa.CasADiProblem#
- C++ documentation: - alpaqa::CasADiProblem- See - alpaqa.Problemfor the full documentation.- __init__(self: alpaqa._alpaqa.float64.CasADiProblem, other: alpaqa._alpaqa.float64.CasADiProblem) None#
- Create a copy 
 - check(self: alpaqa._alpaqa.float64.CasADiProblem) None#
 - eval_f(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]]) float#
 - eval_f_grad_f(*args, **kwargs)#
- Overloaded function. - eval_f_grad_f(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_f_grad_f(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> tuple 
 
 - eval_g(*args, **kwargs)#
- Overloaded function. - eval_g(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], gx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_g(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_L(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_L: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_f(*args, **kwargs)#
- Overloaded function. - eval_grad_f(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_f(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_g_prod(*args, **kwargs)#
- Overloaded function. - eval_grad_g_prod(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_g_prod(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_gi(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_ψ(*args, **kwargs)#
- Overloaded function. - eval_grad_ψ(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_ψ(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_hess_L(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Hessian of the Lagrangian and its symmetry. 
 - eval_hess_L_prod(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_hess_ψ(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Hessian of the augmented Lagrangian and its symmetry. 
 - eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_inactive_indices_res_lna(*args, **kwargs)#
- Overloaded function. - eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.CasADiProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int 
- eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.CasADiProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]] 
 
 - eval_jac_g(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]]) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Jacobian of the constraints and its symmetry. 
 - eval_proj_diff_g(*args, **kwargs)#
- Overloaded function. - eval_proj_diff_g(self: alpaqa._alpaqa.float64.CasADiProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_proj_diff_g(self: alpaqa._alpaqa.float64.CasADiProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_proj_multipliers(self: alpaqa._alpaqa.float64.CasADiProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None#
 - eval_prox_grad_step(*args, **kwargs)#
- Overloaded function. - eval_prox_grad_step(self: alpaqa._alpaqa.float64.CasADiProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_prox_grad_step(self: alpaqa._alpaqa.float64.CasADiProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float] 
 
 - eval_ψ(*args, **kwargs)#
- Overloaded function. - eval_ψ(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], ŷ: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_ψ(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[float, numpy.ndarray[numpy.float64[m, 1]]] 
 
 - eval_ψ_grad_ψ(*args, **kwargs)#
- Overloaded function. - eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.CasADiProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[float, numpy.ndarray[numpy.float64[m, 1]]] 
 
 - get_box_C(self: alpaqa._alpaqa.float64.CasADiProblem) alpaqa._alpaqa.float64.Box#
 - get_box_D(self: alpaqa._alpaqa.float64.CasADiProblem) alpaqa._alpaqa.float64.Box#
 - property m#
- Number of general constraints, dimension of \(g(x)\) 
 - property n#
- Number of decision variables, dimension of \(x\) 
 - property param#
- Parameter vector \(p\) of the problem 
 - provides_eval_grad_L(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_grad_gi(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_grad_ψ(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_hess_L(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_hess_L_prod(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_hess_ψ(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_jac_g(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_ψ(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 - provides_get_box_C(self: alpaqa._alpaqa.float64.CasADiProblem) bool#
 
- class alpaqa.ControlProblem#
- C++ documentation: - alpaqa::TypeErasedControlProblem- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.ControlProblem, other: alpaqa._alpaqa.float64.ControlProblem) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.ControlProblem, problem: alpaqa._alpaqa.float64.CasADiControlProblem) -> None 
 - Explicit conversion 
 
- class alpaqa.ControlProblemWithCounters#
- __init__(*args, **kwargs)#
 - property evaluations#
 - property problem#
 
- class alpaqa.ConvexNewtonDirection#
- C++ documentation: - alpaqa::ConvexNewtonDirection- class AcceleratorParams#
- C++ documentation: - alpaqa::ConvexNewtonDirection::AcceleratorParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.ConvexNewtonDirection.AcceleratorParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.ConvexNewtonDirection.AcceleratorParams, **kwargs) -> None 
 
 - property ldlt#
 - to_dict(self: alpaqa._alpaqa.float64.ConvexNewtonDirection.AcceleratorParams) dict#
 - property ζ#
 - property ν#
 
 - class DirectionParams#
- C++ documentation: - alpaqa::ConvexNewtonDirection::DirectionParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.ConvexNewtonDirection.DirectionParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.ConvexNewtonDirection.DirectionParams, **kwargs) -> None 
 
 - property hessian_vec_factor#
 - property quadratic#
 - to_dict(self: alpaqa._alpaqa.float64.ConvexNewtonDirection.DirectionParams) dict#
 
 - __init__(self: alpaqa._alpaqa.float64.ConvexNewtonDirection, newton_params: alpaqa._alpaqa.float64.ConvexNewtonDirection.AcceleratorParams | dict = {}, direction_params: alpaqa._alpaqa.float64.ConvexNewtonDirection.DirectionParams | dict = {}) None#
 - property params#
 
- class alpaqa.DLProblem#
- C++ documentation: - alpaqa::dl::DLProblem- See - alpaqa.Problemfor the full documentation.- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.DLProblem, so_filename: str, *args, function_name: str = ‘register_alpaqa_problem’, user_param_str: bool = False, **kwargs) -> None 
 - Load a problem from the given shared library file. By default, extra arguments are passed to the problem as a void pointer to a - std::tuple<pybind11::args, pybind11::kwargs>. If the keyword argument- user_param_str=Trueis used, the- argsis converted to a list of strings, and passed as a void pointer to a- std::span<std::string_view>.- __init__(self: alpaqa._alpaqa.float64.DLProblem, other: alpaqa._alpaqa.float64.DLProblem) -> None 
 - Create a copy 
 - call_extra_func(self: alpaqa._alpaqa.float64.DLProblem, name: str, *args, **kwargs) object#
- Call the given extra member function registered by the problem, with the signature - pybind11::object(pybind11::args, pybind11::kwargs).
 - check(self: alpaqa._alpaqa.float64.DLProblem) None#
 - eval_f(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) float#
 - eval_f_g(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], g: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) float#
 - eval_f_grad_f(*args, **kwargs)#
- Overloaded function. - eval_f_grad_f(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_f_grad_f(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> tuple 
 
 - eval_g(*args, **kwargs)#
- Overloaded function. - eval_g(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], gx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_g(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_L(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_L: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_f(*args, **kwargs)#
- Overloaded function. - eval_grad_f(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_f(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_f_grad_g_prod(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_f: numpy.ndarray[numpy.float64[m, 1], flags.writeable], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_g_prod(*args, **kwargs)#
- Overloaded function. - eval_grad_g_prod(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_g_prod(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_gi(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_ψ(*args, **kwargs)#
- Overloaded function. - eval_grad_ψ(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_ψ(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_hess_L(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Hessian of the Lagrangian and its symmetry. 
 - eval_hess_L_prod(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_hess_ψ(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Hessian of the augmented Lagrangian and its symmetry. 
 - eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_inactive_indices_res_lna(*args, **kwargs)#
- Overloaded function. - eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.DLProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int 
- eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.DLProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]] 
 
 - eval_jac_g(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]]) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Jacobian of the constraints and its symmetry. 
 - eval_proj_diff_g(*args, **kwargs)#
- Overloaded function. - eval_proj_diff_g(self: alpaqa._alpaqa.float64.DLProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_proj_diff_g(self: alpaqa._alpaqa.float64.DLProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_proj_multipliers(self: alpaqa._alpaqa.float64.DLProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None#
 - eval_prox_grad_step(*args, **kwargs)#
- Overloaded function. - eval_prox_grad_step(self: alpaqa._alpaqa.float64.DLProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_prox_grad_step(self: alpaqa._alpaqa.float64.DLProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float] 
 
 - eval_ψ(*args, **kwargs)#
- Overloaded function. - eval_ψ(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], ŷ: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_ψ(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[float, numpy.ndarray[numpy.float64[m, 1]]] 
 
 - eval_ψ_grad_ψ(*args, **kwargs)#
- Overloaded function. - eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.DLProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[float, numpy.ndarray[numpy.float64[m, 1]]] 
 
 - get_box_C(self: alpaqa._alpaqa.float64.DLProblem) alpaqa._alpaqa.float64.Box#
 - get_box_D(self: alpaqa._alpaqa.float64.DLProblem) alpaqa._alpaqa.float64.Box#
 - property m#
- Number of general constraints, dimension of \(g(x)\) 
 - property n#
- Number of decision variables, dimension of \(x\) 
 - provides_eval_f_g(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_f_grad_f(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_grad_L(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_grad_f_grad_g_prod(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_grad_gi(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_grad_ψ(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_hess_L(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_hess_L_prod(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_hess_ψ(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_jac_g(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_ψ(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_get_box_C(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_get_box_D(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_get_hess_L_sparsity(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_get_hess_ψ_sparsity(self: alpaqa._alpaqa.float64.DLProblem) bool#
 - provides_get_jac_g_sparsity(self: alpaqa._alpaqa.float64.DLProblem) bool#
 
- class alpaqa.EvalCounter#
- C++ documentation: - alpaqa::EvalCounter- class EvalTimer#
- C++ documentation: - alpaqa::EvalCounter::EvalTimer- __init__(*args, **kwargs)#
 - property f#
 - property f_g#
 - property f_grad_f#
 - property g#
 - property grad_L#
 - property grad_f#
 - property grad_f_grad_g_prod#
 - property grad_g_prod#
 - property grad_gi#
 - property grad_ψ#
 - property hess_L#
 - property hess_L_prod#
 - property hess_ψ#
 - property hess_ψ_prod#
 - property inactive_indices_res_lna#
 - property jac_g#
 - property proj_diff_g#
 - property proj_multipliers#
 - property prox_grad_step#
 - property ψ#
 - property ψ_grad_ψ#
 
 - __init__(*args, **kwargs)#
 - property f#
 - property f_g#
 - property f_grad_f#
 - property g#
 - property grad_L#
 - property grad_f#
 - property grad_f_grad_g_prod#
 - property grad_g_prod#
 - property grad_gi#
 - property grad_ψ#
 - property hess_L#
 - property hess_L_prod#
 - property hess_ψ#
 - property hess_ψ_prod#
 - property inactive_indices_res_lna#
 - property jac_g#
 - property proj_diff_g#
 - property proj_multipliers#
 - property prox_grad_step#
 - property time#
 - property ψ#
 - property ψ_grad_ψ#
 
- class alpaqa.FISTAParams#
- C++ documentation: - alpaqa::FISTAParams- property L_max#
 - property L_min#
 - property Lipschitz#
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.FISTAParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.FISTAParams, **kwargs) -> None 
 
 - property max_iter#
 - property max_no_progress#
 - property max_time#
 - property print_interval#
 - property print_precision#
 - property quadratic_upperbound_tolerance_factor#
 - property stop_crit#
 - to_dict(self: alpaqa._alpaqa.float64.FISTAParams) dict#
 
- class alpaqa.FISTAProgressInfo#
- Data passed to the FISTA progress callback. - C++ documentation: - alpaqa::FISTAProgressInfo- property L#
- Estimate of Lipschitz constant of objective \(L\) 
 - __init__(*args, **kwargs)#
 - property fpr#
- Fixed-point residual \(\left\|p\right\| / \gamma\) 
 - property grad_ψ#
- Gradient of objective \(\nabla\psi(x)\) 
 - property grad_ψ_hat#
- Gradient of objective at x̂ \(\nabla\psi(\hat x)\) 
 - property k#
- Iteration 
 - property norm_sq_p#
- \(\left\|p\right\|^2\) 
 - property p#
- Projected gradient step \(p\) 
 - property params#
- Solver parameters 
 - property problem#
- Problem being solved 
 - property status#
- Current solver status 
 - property t#
- Acceleration parameter \(t\) 
 - property x#
- Decision variable \(x\) 
 - property x_hat#
- Decision variable after projected gradient step \(\hat x\) 
 - property y#
- Lagrange multipliers \(y\) 
 - property y_hat#
- Candidate updated multipliers at x̂ \(\hat y(\hat x)\) 
 - property Σ#
- Penalty factor \(\Sigma\) 
 - property γ#
- Step size \(\gamma\) 
 - property ε#
- Tolerance reached \(\varepsilon_k\) 
 - property φγ#
- Forward-backward envelope \(\varphi_\gamma(x)\) 
 - property ψ#
- Objective value \(\psi(x)\) 
 - property ψ_hat#
- Objective at x̂ \(\psi(\hat x)\) 
 
- class alpaqa.FISTASolver#
- C++ documentation: - alpaqa::FISTASolver- Params#
- alias of - FISTAParams
 - __call__(self: alpaqa._alpaqa.float64.FISTASolver, problem: alpaqa._alpaqa.float64.Problem, opts: alpaqa._alpaqa.float64.InnerSolveOptions = {}, x: numpy.ndarray[numpy.float64[m, 1]] | None = None, y: numpy.ndarray[numpy.float64[m, 1]] | None = None, Σ: numpy.ndarray[numpy.float64[m, 1]] | None = None, *, asynchronous: bool = True, suppress_interrupt: bool = False) tuple#
- Solve the given problem. - Parameters:
- problem – Problem to solve 
- opts – Options (such as desired tolerance) 
- x – Optional initial guess for the decision variables 
- y – Lagrange multipliers (when used as ALM inner solver) 
- Σ – Penalty factors (when used as ALM inner solver) 
- asynchronous – Release the GIL and run the solver on a separate thread 
- suppress_interrupt – If the solver is interrupted by a - KeyboardInterrupt, don’t propagate this exception back to the Python interpreter, but stop the solver early, and return a solution with the status set to- alpaqa.SolverStatus.Interrupted.
 
- Returns:
- Solution \(x\) 
- Updated Lagrange multipliers (only if parameter - ywas not- None)
- Constraint violation (only if parameter - ywas not- None)
- Statistics 
 
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.FISTASolver, other: alpaqa._alpaqa.float64.FISTASolver) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.FISTASolver, fista_params: Union[alpaqa._alpaqa.float64.FISTAParams, dict] = {}) -> None 
 - Create a FISTA solver using structured L-BFGS directions. 
 - property name#
 - set_progress_callback(self: alpaqa._alpaqa.float64.FISTASolver, callback: Callable[[alpaqa._alpaqa.float64.FISTAProgressInfo], None]) alpaqa._alpaqa.float64.FISTASolver#
- Specify a callable that is invoked with some intermediate results on each iteration of the algorithm. 
 - stop(self: alpaqa._alpaqa.float64.FISTASolver) None#
 
- class alpaqa.InnerOCPSolver#
- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.InnerOCPSolver, other: alpaqa._alpaqa.float64.InnerOCPSolver) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.InnerOCPSolver, inner_solver: alpaqa._alpaqa.float64.PANOCOCPSolver) -> None 
 - Explicit conversion. 
 - property name#
 - stop(self: alpaqa._alpaqa.float64.InnerOCPSolver) None#
 
- class alpaqa.InnerSolveOptions#
- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.InnerSolveOptions, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.InnerSolveOptions, **kwargs) -> None 
 
 - property always_overwrite_results#
 - property max_time#
 - to_dict(self: alpaqa._alpaqa.float64.InnerSolveOptions) dict#
 - property tolerance#
 
- class alpaqa.InnerSolver#
- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.InnerSolver, other: alpaqa._alpaqa.float64.InnerSolver) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.InnerSolver, inner_solver: alpaqa._alpaqa.float64.PANOCSolver) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.InnerSolver, inner_solver: alpaqa._alpaqa.float64.FISTASolver) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.InnerSolver, inner_solver: alpaqa._alpaqa.float64.ZeroFPRSolver) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.InnerSolver, inner_solver: alpaqa._alpaqa.float64.PANTRSolver) -> None 
 - Explicit conversion. 
 - property name#
 - stop(self: alpaqa._alpaqa.float64.InnerSolver) None#
 
- class alpaqa.LBFGS#
- C++ documentation - alpaqa::LBFGS- Negative = <Sign.Negative: 1>#
 - class Params#
- C++ documentation - alpaqa::LBFGSParams- class CBFGS#
- C++ documentation - alpaqa::CBFGSParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.LBFGS.Params.CBFGS, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.LBFGS.Params.CBFGS, **kwargs) -> None 
 
 - to_dict(self: alpaqa._alpaqa.float64.LBFGS.Params.CBFGS) dict#
 - property α#
 - property ϵ#
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.LBFGS.Params, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.LBFGS.Params, **kwargs) -> None 
 
 - property cbfgs#
 - property force_pos_def#
 - property memory#
 - property min_abs_s#
 - property min_div_fac#
 - property stepsize#
 - to_dict(self: alpaqa._alpaqa.float64.LBFGS.Params) dict#
 
 - Positive = <Sign.Positive: 0>#
 - class Sign#
- C++ documentation - alpaqa::LBFGS::Sign- Members: - Positive - Negative - Negative = <Sign.Negative: 1>#
 - Positive = <Sign.Positive: 0>#
 - __init__(self: alpaqa._alpaqa.float64.LBFGS.Sign, value: int) None#
 - property name#
 - property value#
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.LBFGS, params: Union[alpaqa._alpaqa.float64.LBFGS.Params, dict]) -> None 
- __init__(self: alpaqa._alpaqa.float64.LBFGS, params: Union[alpaqa._alpaqa.float64.LBFGS.Params, dict], n: int) -> None 
 
 - apply(self: alpaqa._alpaqa.float64.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float) bool#
 - apply_masked(self: alpaqa._alpaqa.float64.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float, J: List[int]) bool#
 - current_history(self: alpaqa._alpaqa.float64.LBFGS) int#
 - property n#
 - property params#
 - reset(self: alpaqa._alpaqa.float64.LBFGS) None#
 - resize(self: alpaqa._alpaqa.float64.LBFGS, n: int) None#
 - s(self: alpaqa._alpaqa.float64.LBFGS, i: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]#
 - scale_y(self: alpaqa._alpaqa.float64.LBFGS, factor: float) None#
 - update(self: alpaqa._alpaqa.float64.LBFGS, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], sign: alpaqa._alpaqa.float64.LBFGS.Sign = <Sign.Positive: 0>, forced: bool = False) bool#
 - update_sy(self: alpaqa._alpaqa.float64.LBFGS, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], pkp1Tpkp1: float, forced: bool = False) bool#
 - static update_valid(params: alpaqa._alpaqa.float64.LBFGS.Params, yTs: float, sTs: float, pTp: float) bool#
 - y(self: alpaqa._alpaqa.float64.LBFGS, i: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]#
 - α(self: alpaqa._alpaqa.float64.LBFGS, i: int) float#
 - ρ(self: alpaqa._alpaqa.float64.LBFGS, i: int) float#
 
- class alpaqa.LBFGSDirection#
- C++ documentation: - alpaqa::LBFGSDirection- class DirectionParams#
- C++ documentation: - alpaqa::LBFGSDirection::DirectionParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.LBFGSDirection.DirectionParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.LBFGSDirection.DirectionParams, **kwargs) -> None 
 
 - property rescale_on_step_size_changes#
 - to_dict(self: alpaqa._alpaqa.float64.LBFGSDirection.DirectionParams) dict#
 
 - __init__(self: alpaqa._alpaqa.float64.LBFGSDirection, lbfgs_params: alpaqa._alpaqa.float64.LBFGS.Params | dict = {}, direction_params: alpaqa._alpaqa.float64.LBFGSDirection.DirectionParams | dict = {}) None#
 - property params#
 
- class alpaqa.LBFGSStepsize#
- C++ documentation: - alpaqa::LBFGSStepSize- Members: - BasedOnExternalStepSize - BasedOnCurvature - BasedOnCurvature = <LBFGSStepsize.BasedOnCurvature: 1>#
 - BasedOnExternalStepSize = <LBFGSStepsize.BasedOnExternalStepSize: 0>#
 - __init__(self: alpaqa._alpaqa.LBFGSStepsize, value: int) None#
 - property name#
 - property value#
 
- class alpaqa.LipschitzEstimateParams#
- C++ documentation: - alpaqa::LipschitzEstimateParams- property L_0#
 - property Lγ_factor#
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.LipschitzEstimateParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.LipschitzEstimateParams, **kwargs) -> None 
 
 - to_dict(self: alpaqa._alpaqa.float64.LipschitzEstimateParams) dict#
 - property δ#
 - property ε#
 
- class alpaqa.MinimizationProblemDescription(objective_expr: SX | MX, variable: SX | MX, constraints_expr: SX | MX | None = None, penalty_constraints_expr: SX | MX | None = None, parameter: SX | MX | None = None, parameter_value: ndarray | None = None, regularizer: float | ndarray | None = None, bounds: Tuple[ndarray, ndarray] | None = None, constraints_bounds: Tuple[ndarray, ndarray] | None = None, penalty_constraints_bounds: Tuple[ndarray, ndarray] | None = None, name: str = 'alpaqa_casadi_problem')[source]#
- High-level description of a minimization problem. - objective_expr: SX | MX#
 - variable: SX | MX#
 - constraints_expr: SX | MX | None = None#
 - penalty_constraints_expr: SX | MX | None = None#
 - parameter: SX | MX | None = None#
 - parameter_value: ndarray | None = None#
 - regularizer: float | ndarray | None = None#
 - bounds: Tuple[ndarray, ndarray] | None = None#
 - constraints_bounds: Tuple[ndarray, ndarray] | None = None#
 - penalty_constraints_bounds: Tuple[ndarray, ndarray] | None = None#
 - name: str = 'alpaqa_casadi_problem'#
 - subject_to_box(C: Tuple[ndarray, ndarray]) MinimizationProblemDescription[source]#
- Add box constraints \(x \in C\) on the problem variables. 
 - subject_to(g: SX | MX, D: ndarray | Tuple[ndarray, ndarray] | None = None) MinimizationProblemDescription[source]#
- Add general constraints \(g(x) \in D\), handled using an augmented Lagrangian method. 
 - subject_to_penalty(g: SX | MX, D: ndarray | Tuple[ndarray, ndarray] | None = None) MinimizationProblemDescription[source]#
- Add general constraints \(g(x) \in D\), handled using a quadratic penalty method. 
 - with_l1_regularizer(λ: float | ndarray) MinimizationProblemDescription[source]#
- Add an \(\ell_1\)-regularization term \(\|\lambda x\|_1\) to the objective. 
 - with_param(p: SX | MX, value: ndarray = None) MinimizationProblemDescription[source]#
- Make the problem depend on a symbolic parameter, with an optional default value. The value can be changed after the problem has been loaded, as wel as in between solves. 
 - with_param_value(value: ndarray) MinimizationProblemDescription[source]#
- Explicitly change the parameter value for the parameter added by - with_param().
 - with_name(name: str) MinimizationProblemDescription[source]#
- Set the name of the problem. Must be a valid file name, and for compiled problems, it should also be a valid C identifier, therefore it is recommended to stick to letters, numbers and underscores. 
 - compile(**kwargs) CasADiProblem[source]#
- Generate, compile and load the problem. - A C compiler is required (e.g. GCC or Clang on Linux, Xcode on macOS, or Visual Studio on Windows). If no compiler is available, you could use the - alpaqa.MinimizationProblemDescription.build()method instead.- Parameters:
- **kwargs – Arguments passed to - alpaqa.casadi_loader.generate_and_compile_casadi_problem().
- Keyword Arguments:
- second_order: - str– Whether to generate functions for evaluating second-order derivatives:- 'no': only first-order derivatives (default).
- 'full': Hessians and Hessian-vector products of the Lagrangian and the augmented Lagrangian.
- 'prod': Hessian-vector products of the Lagrangian and the augmented Lagrangian.
- 'L': Hessian of the Lagrangian.
- 'L_prod': Hessian-vector product of the Lagrangian.
- 'psi': Hessian of the augmented Lagrangian.
- 'psi_prod': Hessian-vector product of the augmented Lagrangian.
 
- name: - str– Optional string description of the problem (used for filenames).
- sym: - Callable– Symbolic variable constructor, usually either- cs.SX.sym(default) or- cs.MX.sym.- SXexpands the expressions and generally results in better run-time performance, while- MXusually has faster compile times.
 
 
 - build(**kwargs) CasADiProblem[source]#
- Finalize the problem formulation and return a problem type that can be used by the solvers. - This method is usually not recommended: the - alpaqa.MinimizationProblemDescription.compile()method is preferred because it pre-compiles the problem for better performance.- Keyword Arguments:
- second_order: - str– Whether to generate functions for evaluating second-order derivatives:- 'no': only first-order derivatives (default).
- 'full': Hessians and Hessian-vector products of the Lagrangian and the augmented Lagrangian.
- 'prod': Hessian-vector products of the Lagrangian and the augmented Lagrangian.
- 'L': Hessian of the Lagrangian.
- 'L_prod': Hessian-vector product of the Lagrangian.
- 'psi': Hessian of the augmented Lagrangian.
- 'psi_prod': Hessian-vector product of the augmented Lagrangian.
 
- sym: - Callable– Symbolic variable constructor, usually either- cs.SX.sym(default) or- cs.MX.sym.- SXexpands the expressions and generally results in better run-time performance.
 
 
 - __init__(objective_expr: SX | MX, variable: SX | MX, constraints_expr: SX | MX | None = None, penalty_constraints_expr: SX | MX | None = None, parameter: SX | MX | None = None, parameter_value: ndarray | None = None, regularizer: float | ndarray | None = None, bounds: Tuple[ndarray, ndarray] | None = None, constraints_bounds: Tuple[ndarray, ndarray] | None = None, penalty_constraints_bounds: Tuple[ndarray, ndarray] | None = None, name: str = 'alpaqa_casadi_problem') None#
 
- class alpaqa.NewtonTRDirection#
- C++ documentation: - alpaqa::NewtonTRDirection- __init__(self: alpaqa._alpaqa.float64.NewtonTRDirection, accelerator_params: alpaqa._alpaqa.float64.SteihaugCGParams | dict = {}, direction_params: alpaqa._alpaqa.float64.NewtonTRDirectionParams | dict = {}) None#
 - property params#
 
- class alpaqa.NewtonTRDirectionParams#
- C++ documentation: - alpaqa::NewtonTRDirectionParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.NewtonTRDirectionParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.NewtonTRDirectionParams, **kwargs) -> None 
 
 - property finite_diff#
 - property finite_diff_stepsize#
 - property hessian_vec_factor#
 - to_dict(self: alpaqa._alpaqa.float64.NewtonTRDirectionParams) dict#
 
- class alpaqa.NoopDirection#
- C++ documentation: - alpaqa::NoopDirection- AcceleratorParams = None#
 - DirectionParams = None#
 - __init__(self: alpaqa._alpaqa.float64.NoopDirection) None#
 - params = None#
 
- class alpaqa.OCPEvalCounter#
- C++ documentation: - alpaqa::OCPEvalCounter- class OCPEvalTimer#
- C++ documentation: - alpaqa::OCPEvalCounter::OCPEvalTimer- __init__(*args, **kwargs)#
 - property add_Q#
 - property add_Q_N#
 - property add_R_masked#
 - property add_R_prod_masked#
 - property add_S_masked#
 - property add_S_prod_masked#
 - property add_gn_hess_constr#
 - property add_gn_hess_constr_N#
 - property constr#
 - property constr_N#
 - property f#
 - property grad_constr_prod#
 - property grad_constr_prod_N#
 - property grad_f_prod#
 - property h#
 - property h_N#
 - property jac_f#
 - property l#
 - property l_N#
 - property q_N#
 - property qr#
 
 - __init__(*args, **kwargs)#
 - property add_Q#
 - property add_Q_N#
 - property add_R_masked#
 - property add_R_prod_masked#
 - property add_S_masked#
 - property add_S_prod_masked#
 - property add_gn_hess_constr#
 - property add_gn_hess_constr_N#
 - property constr#
 - property constr_N#
 - property f#
 - property grad_constr_prod#
 - property grad_constr_prod_N#
 - property grad_f_prod#
 - property h#
 - property h_N#
 - property jac_f#
 - property l#
 - property l_N#
 - property q_N#
 - property qr#
 - property time#
 
- class alpaqa.OCPEvaluator#
- Qk(self: alpaqa._alpaqa.float64.OCPEvaluator, k: int, u: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]] | None = None, μ: numpy.ndarray[numpy.float64[m, 1]] | None = None) numpy.ndarray[numpy.float64[m, n]]#
 - Rk(self: alpaqa._alpaqa.float64.OCPEvaluator, k: int, u: numpy.ndarray[numpy.float64[m, 1]], mask: numpy.ndarray[numpy.int64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]#
 - Sk(self: alpaqa._alpaqa.float64.OCPEvaluator, k: int, u: numpy.ndarray[numpy.float64[m, 1]], mask: numpy.ndarray[numpy.int64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]#
 - __init__(self: alpaqa._alpaqa.float64.OCPEvaluator, problem: alpaqa._alpaqa.float64.ControlProblem) None#
 - forward_backward(self: alpaqa._alpaqa.float64.OCPEvaluator, u: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]] | None = None, μ: numpy.ndarray[numpy.float64[m, 1]] | None = None) Tuple[float, numpy.ndarray[numpy.float64[m, 1]]]#
- Returns:
- Cost 
- Gradient 
 
 
 - lqr_factor_solve(self: alpaqa._alpaqa.float64.OCPEvaluator, u: numpy.ndarray[numpy.float64[m, 1]], γ: float, y: numpy.ndarray[numpy.float64[m, 1]] | None = None, μ: numpy.ndarray[numpy.float64[m, 1]] | None = None) numpy.ndarray[numpy.float64[m, 1]]#
 - lqr_factor_solve_QRS(self: alpaqa._alpaqa.float64.OCPEvaluator, u: numpy.ndarray[numpy.float64[m, 1]], γ: float, Q: list, R: list, S: list, y: numpy.ndarray[numpy.float64[m, 1]] | None = None, μ: numpy.ndarray[numpy.float64[m, 1]] | None = None, masked: bool = True) numpy.ndarray[numpy.float64[m, 1]]#
 
- class alpaqa.PANOCDirection#
- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.PANOCDirection, direction: alpaqa._alpaqa.float64.NoopDirection) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.PANOCDirection, direction: alpaqa._alpaqa.float64.LBFGSDirection) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.PANOCDirection, direction: alpaqa._alpaqa.float64.StructuredLBFGSDirection) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.PANOCDirection, direction: alpaqa._alpaqa.float64.StructuredNewtonDirection) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.PANOCDirection, direction: alpaqa._alpaqa.float64.ConvexNewtonDirection) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.PANOCDirection, direction: alpaqa._alpaqa.float64.AndersonDirection) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.PANOCDirection, direction: object) -> None 
 - Explicit conversion from a custom Python class. 
 - property params#
 
- class alpaqa.PANOCOCPParams#
- C++ documentation: - alpaqa::PANOCOCPParams- property L_max#
 - property L_max_inc#
 - property L_min#
 - property Lipschitz#
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.PANOCOCPParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.PANOCOCPParams, **kwargs) -> None 
 
 - property disable_acceleration#
 - property gn_interval#
 - property gn_sticky#
 - property lbfgs_params#
 - property linesearch_strictness_factor#
 - property linesearch_tolerance_factor#
 - property lqr_factor_cholesky#
 - property max_iter#
 - property max_no_progress#
 - property max_time#
 - property min_linesearch_coefficient#
 - property print_interval#
 - property print_precision#
 - property quadratic_upperbound_tolerance_factor#
 - property reset_lbfgs_on_gn_step#
 - property stop_crit#
 - to_dict(self: alpaqa._alpaqa.float64.PANOCOCPParams) dict#
 
- class alpaqa.PANOCOCPProgressInfo#
- Data passed to the PANOC progress callback. - C++ documentation: - alpaqa::PANOCOCPProgressInfo- property L#
- Estimate of Lipschitz constant of objective \(L\) 
 - __init__(*args, **kwargs)#
 - property fpr#
- Fixed-point residual \(\left\|p\right\| / \gamma\) 
 - property gn#
- Was \(q\) a Gauss-Newton or L-BFGS step? 
 - property grad_ψ#
- Gradient of objective \(\nabla\psi(u)\) 
 - property k#
- Iteration 
 - property lqr_min_rcond#
- Minimum reciprocal condition number encountered in LQR factorization 
 - property nJ#
- Number of inactive constraints \(\#\mathcal J\) 
 - property norm_sq_p#
- \(\left\|p\right\|^2\) 
 - property p#
- Projected gradient step \(p\) 
 - property params#
- Solver parameters 
 - property problem#
- Problem being solved 
 - property q#
- Previous accelerated step \(q\) 
 - property status#
- Current solver status 
 - property u#
- Inputs 
 - property u_hat#
- Inputs after projected gradient step 
 - property x#
- States 
 - property x_hat#
- States after projected gradient step 
 - property xu#
- States \(x\) and inputs \(u\) 
 - property xu_hat#
- Variables after projected gradient step \(\hat u\) 
 - property γ#
- Step size \(\gamma\) 
 - property ε#
- Tolerance reached \(\varepsilon_k\) 
 - property τ#
- Line search parameter \(\tau\) 
 - property φγ#
- Forward-backward envelope \(\varphi_\gamma(u)\) 
 - property ψ#
- Objective value \(\psi(u)\) 
 - property ψ_hat#
- Objective at x̂ \(\psi(\hat u)\) 
 
- class alpaqa.PANOCOCPSolver#
- C++ documentation: - alpaqa::PANOCOCPSolver- Params#
- alias of - PANOCOCPParams
 - __call__(self: alpaqa._alpaqa.float64.PANOCOCPSolver, problem: alpaqa._alpaqa.float64.ControlProblem, opts: alpaqa._alpaqa.float64.InnerSolveOptions = {}, x: numpy.ndarray[numpy.float64[m, 1]] | None = None, y: numpy.ndarray[numpy.float64[m, 1]] | None = None, Σ: numpy.ndarray[numpy.float64[m, 1]] | None = None, *, asynchronous: bool = True, suppress_interrupt: bool = False) tuple#
- Solve the given problem. - Parameters:
- problem – Problem to solve 
- opts – Options (such as desired tolerance) 
- x – Optional initial guess for the decision variables 
- y – Lagrange multipliers (when used as ALM inner solver) 
- Σ – Penalty factors (when used as ALM inner solver) 
- asynchronous – Release the GIL and run the solver on a separate thread 
- suppress_interrupt – If the solver is interrupted by a - KeyboardInterrupt, don’t propagate this exception back to the Python interpreter, but stop the solver early, and return a solution with the status set to- alpaqa.SolverStatus.Interrupted.
 
- Returns:
- Solution \(x\) 
- Updated Lagrange multipliers (only if parameter - ywas not- None)
- Constraint violation (only if parameter - ywas not- None)
- Statistics 
 
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.PANOCOCPSolver, other: alpaqa._alpaqa.float64.PANOCOCPSolver) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.PANOCOCPSolver, panoc_params: Union[alpaqa._alpaqa.float64.PANOCOCPParams, dict]) -> None 
 - Create a PANOC solver. 
 - property name#
 - set_progress_callback(self: alpaqa._alpaqa.float64.PANOCOCPSolver, callback: Callable[[alpaqa._alpaqa.float64.PANOCOCPProgressInfo], None]) alpaqa._alpaqa.float64.PANOCOCPSolver#
- Specify a callable that is invoked with some intermediate results on each iteration of the algorithm. 
 - stop(self: alpaqa._alpaqa.float64.PANOCOCPSolver) None#
 
- class alpaqa.PANOCParams#
- C++ documentation: - alpaqa::PANOCParams- property L_max#
 - property L_min#
 - property Lipschitz#
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.PANOCParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.PANOCParams, **kwargs) -> None 
 
 - property eager_gradient_eval#
 - property force_linesearch#
 - property linesearch_coefficient_update_factor#
 - property linesearch_strictness_factor#
 - property linesearch_tolerance_factor#
 - property max_iter#
 - property max_no_progress#
 - property max_time#
 - property min_linesearch_coefficient#
 - property print_interval#
 - property print_precision#
 - property quadratic_upperbound_tolerance_factor#
 - property recompute_last_prox_step_after_stepsize_change#
 - property stop_crit#
 - to_dict(self: alpaqa._alpaqa.float64.PANOCParams) dict#
 - property update_direction_in_candidate#
 
- class alpaqa.PANOCProgressInfo#
- Data passed to the PANOC progress callback. - C++ documentation: - alpaqa::PANOCProgressInfo- property L#
- Estimate of Lipschitz constant of objective \(L\) 
 - __init__(*args, **kwargs)#
 - property fpr#
- Fixed-point residual \(\left\|p\right\| / \gamma\) 
 - property grad_ψ#
- Gradient of objective \(\nabla\psi(x)\) 
 - property grad_ψ_hat#
- Gradient of objective at x̂ \(\nabla\psi(\hat x)\) 
 - property k#
- Iteration 
 - property norm_sq_p#
- \(\left\|p\right\|^2\) 
 - property p#
- Projected gradient step \(p\) 
 - property params#
- Solver parameters 
 - property problem#
- Problem being solved 
 - property q#
- Previous quasi-Newton step \(\nabla\psi(\hat x)\) 
 - property status#
- Current solver status 
 - property x#
- Decision variable \(x\) 
 - property x_hat#
- Decision variable after projected gradient step \(\hat x\) 
 - property y#
- Lagrange multipliers \(y\) 
 - property y_hat#
- Candidate updated multipliers at x̂ \(\hat y(\hat x)\) 
 - property Σ#
- Penalty factor \(\Sigma\) 
 - property γ#
- Step size \(\gamma\) 
 - property ε#
- Tolerance reached \(\varepsilon_k\) 
 - property τ#
- Previous line search parameter \(\tau\) 
 - property φγ#
- Forward-backward envelope \(\varphi_\gamma(x)\) 
 - property ψ#
- Objective value \(\psi(x)\) 
 - property ψ_hat#
- Objective at x̂ \(\psi(\hat x)\) 
 
- class alpaqa.PANOCSolver#
- C++ documentation: - alpaqa::PANOCSolver- Params#
- alias of - PANOCParams
 - __call__(self: alpaqa._alpaqa.float64.PANOCSolver, problem: alpaqa._alpaqa.float64.Problem, opts: alpaqa._alpaqa.float64.InnerSolveOptions = {}, x: numpy.ndarray[numpy.float64[m, 1]] | None = None, y: numpy.ndarray[numpy.float64[m, 1]] | None = None, Σ: numpy.ndarray[numpy.float64[m, 1]] | None = None, *, asynchronous: bool = True, suppress_interrupt: bool = False) tuple#
- Solve the given problem. - Parameters:
- problem – Problem to solve 
- opts – Options (such as desired tolerance) 
- x – Optional initial guess for the decision variables 
- y – Lagrange multipliers (when used as ALM inner solver) 
- Σ – Penalty factors (when used as ALM inner solver) 
- asynchronous – Release the GIL and run the solver on a separate thread 
- suppress_interrupt – If the solver is interrupted by a - KeyboardInterrupt, don’t propagate this exception back to the Python interpreter, but stop the solver early, and return a solution with the status set to- alpaqa.SolverStatus.Interrupted.
 
- Returns:
- Solution \(x\) 
- Updated Lagrange multipliers (only if parameter - ywas not- None)
- Constraint violation (only if parameter - ywas not- None)
- Statistics 
 
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.PANOCSolver, other: alpaqa._alpaqa.float64.PANOCSolver) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.PANOCSolver, panoc_params: Union[alpaqa._alpaqa.float64.PANOCParams, dict] = {}, lbfgs_params: Union[alpaqa._alpaqa.float64.LBFGS.Params, dict] = {}, direction_params: Union[alpaqa._alpaqa.float64.StructuredLBFGSDirection.DirectionParams, dict] = {}) -> None 
 - Create a PANOC solver using structured L-BFGS directions. - __init__(self: alpaqa._alpaqa.float64.PANOCSolver, panoc_params: Union[alpaqa._alpaqa.float64.PANOCParams, dict], direction: alpaqa._alpaqa.float64.PANOCDirection) -> None 
 - Create a PANOC solver using a custom direction. 
 - property direction#
 - property name#
 - set_progress_callback(self: alpaqa._alpaqa.float64.PANOCSolver, callback: Callable[[alpaqa._alpaqa.float64.PANOCProgressInfo], None]) alpaqa._alpaqa.float64.PANOCSolver#
- Specify a callable that is invoked with some intermediate results on each iteration of the algorithm. 
 - stop(self: alpaqa._alpaqa.float64.PANOCSolver) None#
 
- class alpaqa.PANOCStopCrit#
- C++ documentation: - alpaqa::PANOCStopCrit- Members: - ApproxKKT - ApproxKKT2 - ProjGradNorm - ProjGradNorm2 - ProjGradUnitNorm - ProjGradUnitNorm2 - FPRNorm - FPRNorm2 - Ipopt - LBFGSBpp - ApproxKKT = <PANOCStopCrit.ApproxKKT: 0>#
 - ApproxKKT2 = <PANOCStopCrit.ApproxKKT2: 1>#
 - FPRNorm = <PANOCStopCrit.FPRNorm: 6>#
 - FPRNorm2 = <PANOCStopCrit.FPRNorm2: 7>#
 - Ipopt = <PANOCStopCrit.Ipopt: 8>#
 - LBFGSBpp = <PANOCStopCrit.LBFGSBpp: 9>#
 - ProjGradNorm = <PANOCStopCrit.ProjGradNorm: 2>#
 - ProjGradNorm2 = <PANOCStopCrit.ProjGradNorm2: 3>#
 - ProjGradUnitNorm = <PANOCStopCrit.ProjGradUnitNorm: 4>#
 - ProjGradUnitNorm2 = <PANOCStopCrit.ProjGradUnitNorm2: 5>#
 - __init__(self: alpaqa._alpaqa.PANOCStopCrit, value: int) None#
 - property name#
 - property value#
 
- class alpaqa.PANTRDirection#
- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.PANTRDirection, direction: alpaqa._alpaqa.float64.NewtonTRDirection) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.PANTRDirection, direction: object) -> None 
 - Explicit conversion from a custom Python class. 
 - property params#
 
- class alpaqa.PANTRParams#
- C++ documentation: - alpaqa::PANTRParams- property L_max#
 - property L_min#
 - property Lipschitz#
 - property TR_tolerance_factor#
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.PANTRParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.PANTRParams, **kwargs) -> None 
 
 - property compute_ratio_using_new_stepsize#
 - property disable_acceleration#
 - property initial_radius#
 - property max_iter#
 - property max_no_progress#
 - property max_time#
 - property min_radius#
 - property print_interval#
 - property print_precision#
 - property quadratic_upperbound_tolerance_factor#
 - property radius_factor_acceptable#
 - property radius_factor_good#
 - property radius_factor_rejected#
 - property ratio_approx_fbe_quadratic_model#
 - property ratio_threshold_acceptable#
 - property ratio_threshold_good#
 - property recompute_last_prox_step_after_direction_reset#
 - property stop_crit#
 - to_dict(self: alpaqa._alpaqa.float64.PANTRParams) dict#
 - property update_direction_on_prox_step#
 
- class alpaqa.PANTRProgressInfo#
- Data passed to the PANTR progress callback. - C++ documentation: - alpaqa::PANTRProgressInfo- property L#
- Estimate of Lipschitz constant of objective \(L\) 
 - __init__(*args, **kwargs)#
 - property fpr#
- Fixed-point residual \(\left\|p\right\| / \gamma\) 
 - property grad_ψ#
- Gradient of objective \(\nabla\psi(x)\) 
 - property grad_ψ_hat#
- Gradient of objective at x̂ \(\nabla\psi(\hat x)\) 
 - property k#
- Iteration 
 - property norm_sq_p#
- \(\left\|p\right\|^2\) 
 - property p#
- Projected gradient step \(p\) 
 - property params#
- Solver parameters 
 - property problem#
- Problem being solved 
 - property q#
- Previous quasi-Newton step \(\nabla\psi(\hat x)\) 
 - property status#
- Current solver status 
 - property x#
- Decision variable \(x\) 
 - property x_hat#
- Decision variable after projected gradient step \(\hat x\) 
 - property y#
- Lagrange multipliers \(y\) 
 - property y_hat#
- Candidate updated multipliers at x̂ \(\hat y(\hat x)\) 
 - property Δ#
- Previous trust radius \(\Delta\) 
 - property Σ#
- Penalty factor \(\Sigma\) 
 - property γ#
- Step size \(\gamma\) 
 - property ε#
- Tolerance reached \(\varepsilon_k\) 
 - property ρ#
- Previous decrease ratio \(\rho\) 
 - property τ#
- Acceptance (1) or rejection (0) of previous accelerated step \(\tau\) 
 - property φγ#
- Forward-backward envelope \(\varphi_\gamma(x)\) 
 - property ψ#
- Objective value \(\psi(x)\) 
 - property ψ_hat#
- Objective at x̂ \(\psi(\hat x)\) 
 
- class alpaqa.PANTRSolver#
- C++ documentation: - alpaqa::PANTRSolver- Params#
- alias of - PANTRParams
 - __call__(self: alpaqa._alpaqa.float64.PANTRSolver, problem: alpaqa._alpaqa.float64.Problem, opts: alpaqa._alpaqa.float64.InnerSolveOptions = {}, x: numpy.ndarray[numpy.float64[m, 1]] | None = None, y: numpy.ndarray[numpy.float64[m, 1]] | None = None, Σ: numpy.ndarray[numpy.float64[m, 1]] | None = None, *, asynchronous: bool = True, suppress_interrupt: bool = False) tuple#
- Solve the given problem. - Parameters:
- problem – Problem to solve 
- opts – Options (such as desired tolerance) 
- x – Optional initial guess for the decision variables 
- y – Lagrange multipliers (when used as ALM inner solver) 
- Σ – Penalty factors (when used as ALM inner solver) 
- asynchronous – Release the GIL and run the solver on a separate thread 
- suppress_interrupt – If the solver is interrupted by a - KeyboardInterrupt, don’t propagate this exception back to the Python interpreter, but stop the solver early, and return a solution with the status set to- alpaqa.SolverStatus.Interrupted.
 
- Returns:
- Solution \(x\) 
- Updated Lagrange multipliers (only if parameter - ywas not- None)
- Constraint violation (only if parameter - ywas not- None)
- Statistics 
 
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.PANTRSolver, other: alpaqa._alpaqa.float64.PANTRSolver) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.PANTRSolver, pantr_params: Union[alpaqa._alpaqa.float64.PANTRParams, dict] = {}, steihaug_params: Union[alpaqa._alpaqa.float64.SteihaugCGParams, dict] = {}, direction_params: Union[alpaqa._alpaqa.float64.NewtonTRDirectionParams, dict] = {}) -> None 
 - Create a PANTR solver using a structured Newton CG subproblem solver. - __init__(self: alpaqa._alpaqa.float64.PANTRSolver, pantr_params: Union[alpaqa._alpaqa.float64.PANTRParams, dict], direction: alpaqa._alpaqa.float64.PANTRDirection) -> None 
 - Create a PANTR solver using a custom direction. 
 - property direction#
 - property name#
 - set_progress_callback(self: alpaqa._alpaqa.float64.PANTRSolver, callback: Callable[[alpaqa._alpaqa.float64.PANTRProgressInfo], None]) alpaqa._alpaqa.float64.PANTRSolver#
- Specify a callable that is invoked with some intermediate results on each iteration of the algorithm. 
 - stop(self: alpaqa._alpaqa.float64.PANTRSolver) None#
 
- class alpaqa.Problem#
- C++ documentation: - alpaqa::TypeErasedProblem- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.Problem, other: alpaqa._alpaqa.float64.Problem) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.Problem, problem: alpaqa._alpaqa.float64.CasADiProblem) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.Problem, problem: alpaqa._alpaqa.float64.CUTEstProblem) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.Problem, problem: alpaqa._alpaqa.float64.DLProblem) -> None 
 - Explicit conversion. - __init__(self: alpaqa._alpaqa.float64.Problem, problem: object) -> None 
 - Explicit conversion from a custom Python class. 
 - check(self: alpaqa._alpaqa.float64.Problem) None#
 - eval_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) float#
 - eval_f_g(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], g: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) float#
 - eval_f_grad_f(*args, **kwargs)#
- Overloaded function. - eval_f_grad_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_f_grad_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) -> tuple 
 
 - eval_g(*args, **kwargs)#
- Overloaded function. - eval_g(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], gx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_g(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_L(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_L: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_f(*args, **kwargs)#
- Overloaded function. - eval_grad_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_f_grad_g_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_f: numpy.ndarray[numpy.float64[m, 1], flags.writeable], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_g_prod(*args, **kwargs)#
- Overloaded function. - eval_grad_g_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_g_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_grad_gi(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_ψ(*args, **kwargs)#
- Overloaded function. - eval_grad_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_grad_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_hess_L(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Hessian of the Lagrangian and its symmetry. 
 - eval_hess_L_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_hess_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float = 1.0) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Hessian of the augmented Lagrangian and its symmetry. 
 - eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_inactive_indices_res_lna(*args, **kwargs)#
- Overloaded function. - eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int 
- eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]] 
 
 - eval_jac_g(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) Tuple[object, alpaqa._alpaqa.Symmetry]#
- Returns the Jacobian of the constraints and its symmetry. 
 - eval_proj_diff_g(*args, **kwargs)#
- Overloaded function. - eval_proj_diff_g(self: alpaqa._alpaqa.float64.Problem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_proj_diff_g(self: alpaqa._alpaqa.float64.Problem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_proj_multipliers(self: alpaqa._alpaqa.float64.Problem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None#
 - eval_prox_grad_step(*args, **kwargs)#
- Overloaded function. - eval_prox_grad_step(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_prox_grad_step(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float] 
 
 - eval_ψ(*args, **kwargs)#
- Overloaded function. - eval_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], ŷ: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[float, numpy.ndarray[numpy.float64[m, 1]]] 
 
 - eval_ψ_grad_ψ(*args, **kwargs)#
- Overloaded function. - eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[float, numpy.ndarray[numpy.float64[m, 1]]] 
 
 - get_box_C(self: alpaqa._alpaqa.float64.Problem) alpaqa._alpaqa.float64.Box#
 - get_box_D(self: alpaqa._alpaqa.float64.Problem) alpaqa._alpaqa.float64.Box#
 - property m#
- Number of general constraints, dimension of \(g(x)\) 
 - property n#
- Number of decision variables, dimension of \(x\) 
 - provides_check(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_f_g(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_f_grad_f(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_grad_L(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_grad_f_grad_g_prod(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_grad_gi(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_grad_ψ(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_hess_L(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_hess_L_prod(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_hess_ψ(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_jac_g(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_ψ(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_get_box_C(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_get_box_D(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_get_hess_L_sparsity(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_get_hess_ψ_sparsity(self: alpaqa._alpaqa.float64.Problem) bool#
 - provides_get_jac_g_sparsity(self: alpaqa._alpaqa.float64.Problem) bool#
 
- class alpaqa.ProblemWithCounters#
- __init__(*args, **kwargs)#
 - property evaluations#
 - property problem#
 
- class alpaqa.SolverStatus#
- C++ documentation: - alpaqa::SolverStatus- Members: - Busy : In progress. - Converged : Converged and reached given tolerance - MaxTime : Maximum allowed execution time exceeded - MaxIter : Maximum number of iterations exceeded - NotFinite : Intermediate results were infinite or NaN - NoProgress : No progress was made in the last iteration - Interrupted : Solver was interrupted by the user - Busy = <SolverStatus.Busy: 0>#
 - Converged = <SolverStatus.Converged: 1>#
 - Interrupted = <SolverStatus.Interrupted: 6>#
 - MaxIter = <SolverStatus.MaxIter: 3>#
 - MaxTime = <SolverStatus.MaxTime: 2>#
 - NoProgress = <SolverStatus.NoProgress: 5>#
 - NotFinite = <SolverStatus.NotFinite: 4>#
 - __init__(self: alpaqa._alpaqa.SolverStatus, value: int) None#
 - property name#
 - property value#
 
- class alpaqa.SteihaugCGParams#
- C++ documentation: - alpaqa::SteihaugCGParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.SteihaugCGParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.SteihaugCGParams, **kwargs) -> None 
 
 - property max_iter_factor#
 - to_dict(self: alpaqa._alpaqa.float64.SteihaugCGParams) dict#
 - property tol_max#
 - property tol_scale#
 - property tol_scale_root#
 
- class alpaqa.StructuredLBFGSDirection#
- C++ documentation: - alpaqa::StructuredLBFGSDirection- class DirectionParams#
- C++ documentation: - alpaqa::StructuredLBFGSDirection::DirectionParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.StructuredLBFGSDirection.DirectionParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.StructuredLBFGSDirection.DirectionParams, **kwargs) -> None 
 
 - property full_augmented_hessian#
 - property hessian_vec_factor#
 - property hessian_vec_finite_differences#
 - to_dict(self: alpaqa._alpaqa.float64.StructuredLBFGSDirection.DirectionParams) dict#
 
 - __init__(self: alpaqa._alpaqa.float64.StructuredLBFGSDirection, lbfgs_params: alpaqa._alpaqa.float64.LBFGS.Params | dict = {}, direction_params: alpaqa._alpaqa.float64.StructuredLBFGSDirection.DirectionParams | dict = {}) None#
 - property params#
 
- class alpaqa.StructuredNewtonDirection#
- C++ documentation: - alpaqa::StructuredNewtonDirection- class DirectionParams#
- C++ documentation: - alpaqa::StructuredNewtonDirection::DirectionParams- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.StructuredNewtonDirection.DirectionParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.StructuredNewtonDirection.DirectionParams, **kwargs) -> None 
 
 - property hessian_vec_factor#
 - to_dict(self: alpaqa._alpaqa.float64.StructuredNewtonDirection.DirectionParams) dict#
 
 - __init__(self: alpaqa._alpaqa.float64.StructuredNewtonDirection, direction_params: alpaqa._alpaqa.float64.StructuredNewtonDirection.DirectionParams | dict = {}) None#
 - property params#
 
- class alpaqa.Symmetry#
- C++ documentation: - alpaqa::sparsity::Symmetry- Members: - Unsymmetric - Upper - Lower - Lower = <Symmetry.Lower: 2>#
 - Unsymmetric = <Symmetry.Unsymmetric: 0>#
 - Upper = <Symmetry.Upper: 1>#
 - __init__(self: alpaqa._alpaqa.Symmetry, value: int) None#
 - property name#
 - property value#
 
- class alpaqa.UnconstrProblem#
- C++ documentation: - alpaqa::UnconstrProblem- __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.UnconstrProblem, other: alpaqa._alpaqa.float64.UnconstrProblem) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.UnconstrProblem, n: int) -> None 
 - Parameters:
- n – Number of unknowns 
 
 - eval_g(self: alpaqa._alpaqa.float64.UnconstrProblem, x: numpy.ndarray[numpy.float64[m, 1]], g: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_g_prod(self: alpaqa._alpaqa.float64.UnconstrProblem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_grad_gi(self: alpaqa._alpaqa.float64.UnconstrProblem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_inactive_indices_res_lna(*args, **kwargs)#
- Overloaded function. - eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.UnconstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int 
- eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.UnconstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]] 
 
 - eval_jac_g(self: alpaqa._alpaqa.float64.UnconstrProblem, x: numpy.ndarray[numpy.float64[m, 1]], J_values: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
 - eval_proj_diff_g(*args, **kwargs)#
- Overloaded function. - eval_proj_diff_g(self: alpaqa._alpaqa.float64.UnconstrProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None 
- eval_proj_diff_g(self: alpaqa._alpaqa.float64.UnconstrProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]] 
 
 - eval_proj_multipliers(self: alpaqa._alpaqa.float64.UnconstrProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None#
 - eval_prox_grad_step(*args, **kwargs)#
- Overloaded function. - eval_prox_grad_step(self: alpaqa._alpaqa.float64.UnconstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x_hat: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float 
- eval_prox_grad_step(self: alpaqa._alpaqa.float64.UnconstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float] 
 
 - property m#
- Number of general constraints, dimension of \(g(x)\) 
 - property n#
- Number of decision variables, dimension of \(x\) 
 - resize(self: alpaqa._alpaqa.float64.UnconstrProblem, n: int) None#
 
- class alpaqa.ZeroFPRParams#
- C++ documentation: - alpaqa::ZeroFPRParams- property L_max#
 - property L_min#
 - property Lipschitz#
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.ZeroFPRParams, params: dict) -> None 
- __init__(self: alpaqa._alpaqa.float64.ZeroFPRParams, **kwargs) -> None 
 
 - property force_linesearch#
 - property linesearch_strictness_factor#
 - property linesearch_tolerance_factor#
 - property max_iter#
 - property max_no_progress#
 - property max_time#
 - property min_linesearch_coefficient#
 - property print_interval#
 - property print_precision#
 - property quadratic_upperbound_tolerance_factor#
 - property recompute_last_prox_step_after_stepsize_change#
 - property stop_crit#
 - to_dict(self: alpaqa._alpaqa.float64.ZeroFPRParams) dict#
 - property update_direction_from_prox_step#
 - property update_direction_in_candidate#
 
- class alpaqa.ZeroFPRProgressInfo#
- Data passed to the ZeroFPR progress callback. - C++ documentation: - alpaqa::ZeroFPRProgressInfo- property L#
- Estimate of Lipschitz constant of objective \(L\) 
 - __init__(*args, **kwargs)#
 - property fpr#
- Fixed-point residual \(\left\|p\right\| / \gamma\) 
 - property grad_ψ#
- Gradient of objective \(\nabla\psi(x)\) 
 - property grad_ψ_hat#
- Gradient of objective at x̂ \(\nabla\psi(\hat x)\) 
 - property k#
- Iteration 
 - property norm_sq_p#
- \(\left\|p\right\|^2\) 
 - property p#
- Projected gradient step \(p\) 
 - property params#
- Solver parameters 
 - property problem#
- Problem being solved 
 - property q#
- Previous quasi-Newton step \(\nabla\psi(\hat x)\) 
 - property status#
- Current solver status 
 - property x#
- Decision variable \(x\) 
 - property x_hat#
- Decision variable after projected gradient step \(\hat x\) 
 - property y#
- Lagrange multipliers \(y\) 
 - property y_hat#
- Candidate updated multipliers at x̂ \(\hat y(\hat x)\) 
 - property Σ#
- Penalty factor \(\Sigma\) 
 - property γ#
- Step size \(\gamma\) 
 - property ε#
- Tolerance reached \(\varepsilon_k\) 
 - property τ#
- Previous line search parameter \(\tau\) 
 - property φγ#
- Forward-backward envelope \(\varphi_\gamma(x)\) 
 - property ψ#
- Objective value \(\psi(x)\) 
 - property ψ_hat#
- Objective at x̂ \(\psi(\hat x)\) 
 
- class alpaqa.ZeroFPRSolver#
- C++ documentation: - alpaqa::ZeroFPRSolver- Params#
- alias of - ZeroFPRParams
 - __call__(self: alpaqa._alpaqa.float64.ZeroFPRSolver, problem: alpaqa._alpaqa.float64.Problem, opts: alpaqa._alpaqa.float64.InnerSolveOptions = {}, x: numpy.ndarray[numpy.float64[m, 1]] | None = None, y: numpy.ndarray[numpy.float64[m, 1]] | None = None, Σ: numpy.ndarray[numpy.float64[m, 1]] | None = None, *, asynchronous: bool = True, suppress_interrupt: bool = False) tuple#
- Solve the given problem. - Parameters:
- problem – Problem to solve 
- opts – Options (such as desired tolerance) 
- x – Optional initial guess for the decision variables 
- y – Lagrange multipliers (when used as ALM inner solver) 
- Σ – Penalty factors (when used as ALM inner solver) 
- asynchronous – Release the GIL and run the solver on a separate thread 
- suppress_interrupt – If the solver is interrupted by a - KeyboardInterrupt, don’t propagate this exception back to the Python interpreter, but stop the solver early, and return a solution with the status set to- alpaqa.SolverStatus.Interrupted.
 
- Returns:
- Solution \(x\) 
- Updated Lagrange multipliers (only if parameter - ywas not- None)
- Constraint violation (only if parameter - ywas not- None)
- Statistics 
 
 
 - __init__(*args, **kwargs)#
- Overloaded function. - __init__(self: alpaqa._alpaqa.float64.ZeroFPRSolver, other: alpaqa._alpaqa.float64.ZeroFPRSolver) -> None 
 - Create a copy - __init__(self: alpaqa._alpaqa.float64.ZeroFPRSolver, zerofpr_params: Union[alpaqa._alpaqa.float64.ZeroFPRParams, dict] = {}, lbfgs_params: Union[alpaqa._alpaqa.float64.LBFGS.Params, dict] = {}, direction_params: Union[alpaqa._alpaqa.float64.StructuredLBFGSDirection.DirectionParams, dict] = {}) -> None 
 - Create a ZeroFPR solver using structured L-BFGS directions. - __init__(self: alpaqa._alpaqa.float64.ZeroFPRSolver, zerofpr_params: Union[alpaqa._alpaqa.float64.ZeroFPRParams, dict], direction: alpaqa._alpaqa.float64.PANOCDirection) -> None 
 - Create a ZeroFPR solver using a custom direction. 
 - property direction#
 - property name#
 - set_progress_callback(self: alpaqa._alpaqa.float64.ZeroFPRSolver, callback: Callable[[alpaqa._alpaqa.float64.ZeroFPRProgressInfo], None]) alpaqa._alpaqa.float64.ZeroFPRSolver#
- Specify a callable that is invoked with some intermediate results on each iteration of the algorithm. 
 - stop(self: alpaqa._alpaqa.float64.ZeroFPRSolver) None#
 
- alpaqa.control_problem_with_counters(problem: alpaqa._alpaqa.float64.CasADiControlProblem) alpaqa._alpaqa.float64.ControlProblemWithCounters#
- Wrap the problem to count all function evaluations. - Parameters:
- problem – The original problem to wrap. Copied. 
- Returns:
- Wrapped problem. 
- Counters for wrapped problem. 
 
 
- alpaqa.deserialize_casadi_problem(functions: Dict[str, str]) alpaqa._alpaqa.float64.CasADiProblem#
- Deserialize a CasADi problem from the given serialized functions. 
- alpaqa.load_casadi_control_problem(so_name: str, N: int) alpaqa._alpaqa.float64.CasADiControlProblem#
- Load a compiled CasADi optimal control problem. 
- alpaqa.load_casadi_problem(so_name: str) alpaqa._alpaqa.float64.CasADiProblem#
- Load a compiled CasADi problem. 
- alpaqa.minimize(f: SX | MX, x: SX | MX) MinimizationProblemDescription[source]#
- Formulate a minimization problem with objective function \(f(x)\) and unknown variables \(x\). 
- exception alpaqa.not_implemented_error#
- alpaqa.problem_with_counters(*args, **kwargs)#
- Overloaded function. - problem_with_counters(problem: alpaqa._alpaqa.float64.CasADiProblem) -> alpaqa._alpaqa.float64.ProblemWithCounters 
 - Wrap the problem to count all function evaluations. - Parameters:
- problem – The original problem to wrap. Copied. 
- Returns:
- Wrapped problem. 
- Counters for wrapped problem. 
 
 - problem_with_counters(problem: alpaqa._alpaqa.float64.CUTEstProblem) -> alpaqa._alpaqa.float64.ProblemWithCounters 
 - Wrap the problem to count all function evaluations. - Parameters:
- problem – The original problem to wrap. Copied. 
- Returns:
- Wrapped problem. 
- Counters for wrapped problem. 
 
 - problem_with_counters(problem: alpaqa._alpaqa.float64.DLProblem) -> alpaqa._alpaqa.float64.ProblemWithCounters 
 - Wrap the problem to count all function evaluations. - Parameters:
- problem – The original problem to wrap. Copied. 
- Returns:
- Wrapped problem. 
- Counters for wrapped problem. 
 
 - problem_with_counters(problem: object) -> alpaqa._alpaqa.float64.ProblemWithCounters 
 
- alpaqa.provided_functions(problem: alpaqa._alpaqa.float64.Problem) str#
- Returns a string representing the functions provided by the problem. 
- alpaqa.prox(*args, **kwargs)#
- Overloaded function. - prox(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version overwrites the given output arguments.- See also - prox(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version returns the outputs as a tuple.- See also - prox(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version overwrites the given output arguments.- See also - prox(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version returns the outputs as a tuple.- See also - prox(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version overwrites the given output arguments.- See also - prox(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version returns the outputs as a tuple.- See also - prox(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version overwrites the given output arguments.- See also - prox(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version returns the outputs as a tuple.- See also 
- alpaqa.prox_step(*args, **kwargs)#
- Overloaded function. - prox_step(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version overwrites the given output arguments.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version returns the outputs as a tuple.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version overwrites the given output arguments.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version returns the outputs as a tuple.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version overwrites the given output arguments.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version returns the outputs as a tuple.- See also - prox_step(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version overwrites the given output arguments.- See also - prox_step(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version returns the outputs as a tuple.- See also 
- alpaqa.casadi_generator.generate_casadi_problem(f: ~casadi.casadi.Function, g: ~casadi.casadi.Function | None, second_order: ~typing.Literal['no', 'full', 'prod', 'L', 'L_prod', 'psi', 'psi_prod'] = 'no', name: str = 'alpaqa_problem', sym: ~typing.Callable = <function GenSX.sym>) CodeGenerator[source]#
- Convert the objective and constraint functions into a CasADi code generator. - Parameters:
- f – Objective function. 
- g – Constraint function. 
- second_order – Whether to generate functions for evaluating Hessians. 
- name – Optional string description of the problem (used for filename). 
- sym – Symbolic variable constructor, usually either - casadi.SX.sym(default) or- casadi.MX.sym.
 
- Returns:
- Code generator that generates the functions and derivatives used by the solvers. 
 
- alpaqa.casadi_generator.generate_casadi_control_problem(f: Function, l: Function, l_N: Function, h: Function = None, h_N: Function = None, c: Function = None, c_N: Function = None, name: str = 'alpaqa_control_problem') CodeGenerator[source]#
- Convert the dynamics and cost functions into a CasADi code generator. - Parameters:
- f – Dynamics. 
- name – Optional string description of the problem (used for filename). 
 
- Returns:
- Code generator that generates the functions and derivatives used by the solvers. 
 
- alpaqa.casadi_generator.write_casadi_problem_data(sofile, C, D, param, l1_reg, penalty_alm_split, name)[source]#
- Write the CSV file with constant data for the problem. 
- alpaqa.casadi_generator.write_casadi_control_problem_data(sofile, U, D, D_N, x_init, param, penalty_alm_split=0, penalty_alm_split_N=None)[source]#
- Write the CSV file with constant data for the problem. 
- alpaqa.casadi_loader.generate_and_compile_casadi_problem_no_load(f: Function, g: Function, *, C=None, D=None, param=None, l1_reg=None, penalty_alm_split=None, second_order: Literal['no', 'full', 'prod', 'L', 'L_prod', 'psi', 'psi_prod'] = 'no', name: str = 'alpaqa_problem', **kwargs) Path[source]#
- Compile the objective and constraint functions into a alpaqa Problem. - Parameters:
- f – Objective function f(x). 
- g – Constraint function g(x). 
- C – Bound constraints on x. 
- D – Bound constraints on g(x). 
- param – Problem parameter values. 
- l1_reg – L1-regularization on x. 
- penalty_alm_split – This many components at the beginning of g(x) are handled using a quadratic penalty method rather than an augmented Lagrangian method. 
- second_order – Whether to generate functions for evaluating Hessians. 
- name – Optional string description of the problem (used for filename). 
- kwargs – Parameters passed to - casadi_generator.generate_casadi_problem().
 
- Returns:
- Path to the shared object file with CasADi functions that can be loaded by the solvers. 
 - Note - If you copy the shared object file, don’t forget to also copy the accompanying CSV file with problem data. 
- alpaqa.casadi_loader.generate_and_compile_casadi_problem(*args, **kwargs) CasADiProblem[source]#
- Calls - generate_and_compile_casadi_problem_no_load()and loads the resulting problem file.- Returns:
- Problem specification that can be passed to the solvers.