Functions and operators#
(Proximal) functions and operators.
- alpaqa.prox(*args, **kwargs)
- Overloaded function. - prox(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version overwrites the given output arguments.- See also - prox(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version returns the outputs as a tuple.- See also - prox(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version overwrites the given output arguments.- See also - prox(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version returns the outputs as a tuple.- See also - prox(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version overwrites the given output arguments.- See also - prox(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version returns the outputs as a tuple.- See also - prox(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1) -> float 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version overwrites the given output arguments.- See also - prox(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::proxCompute the proximal mapping of- selfat- inwith step size- γ. This version returns the outputs as a tuple.- See also 
- alpaqa.prox_step(*args, **kwargs)
- Overloaded function. - prox_step(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version overwrites the given output arguments.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.NuclearNorm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version returns the outputs as a tuple.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version overwrites the given output arguments.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.L1Norm, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version returns the outputs as a tuple.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version overwrites the given output arguments.- See also - prox_step(self: alpaqa._alpaqa.float64.functions.L1NormElementwise, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version returns the outputs as a tuple.- See also - prox_step(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], output: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], output_step: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> float 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version overwrites the given output arguments.- See also - prox_step(self: alpaqa._alpaqa.float64.Box, input: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], input_step: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], γ: float = 1, γ_step: float = -1) -> Tuple[float, numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]] 
 - C++ documentation: - alpaqa::prox_stepCompute a generalized forward-backward step. This version returns the outputs as a tuple.- See also