Problem formulation#
- class alpaqa._alpaqa.float64.BoxConstrProblem
C++ documentation:
alpaqa::BoxConstrProblem
- property C
Box constraints on \(x\)
- property D
Box constraints on \(g(x)\)
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: alpaqa._alpaqa.float64.BoxConstrProblem, other: alpaqa._alpaqa.float64.BoxConstrProblem) -> None
Create a copy
__init__(self: alpaqa._alpaqa.float64.BoxConstrProblem, n: int, m: int) -> None
- Parameters:
n – Number of unknowns
m – Number of constraints
- eval_inactive_indices_res_lna(*args, **kwargs)
Overloaded function.
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]]
- eval_proj_diff_g(*args, **kwargs)
Overloaded function.
eval_proj_diff_g(self: alpaqa._alpaqa.float64.BoxConstrProblem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_proj_diff_g(self: alpaqa._alpaqa.float64.BoxConstrProblem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_proj_multipliers(self: alpaqa._alpaqa.float64.BoxConstrProblem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None
- eval_prox_grad_step(*args, **kwargs)
Overloaded function.
eval_prox_grad_step(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x̂: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_prox_grad_step(self: alpaqa._alpaqa.float64.BoxConstrProblem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float]
- get_box_C(self: alpaqa._alpaqa.float64.BoxConstrProblem) alpaqa._alpaqa.float64.Box
- get_box_D(self: alpaqa._alpaqa.float64.BoxConstrProblem) alpaqa._alpaqa.float64.Box
- property l1_reg
\(\ell_1\) regularization on \(x\)
- property m
Number of general constraints, dimension of \(g(x)\)
- property n
Number of decision variables, dimension of \(x\)
- property penalty_alm_split
Index between quadratic penalty and augmented Lagrangian constraints
- class alpaqa._alpaqa.float64.Problem
C++ documentation:
alpaqa::TypeErasedProblem
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: alpaqa._alpaqa.float64.Problem, other: alpaqa._alpaqa.float64.Problem) -> None
Create a copy
__init__(self: alpaqa._alpaqa.float64.Problem, arg0: alpaqa._alpaqa.float64.CasADiProblem) -> None
__init__(self: alpaqa._alpaqa.float64.Problem, arg0: object) -> None
- eval_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) float
- eval_f_g(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], g: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) float
- eval_f_grad_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) float
- eval_g(*args, **kwargs)
Overloaded function.
eval_g(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], gx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_g(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_grad_L(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_L: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_grad_f(*args, **kwargs)
Overloaded function.
eval_grad_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], grad_fx: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_grad_f(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_grad_f_grad_g_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_f: numpy.ndarray[numpy.float64[m, 1], flags.writeable], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_grad_g_prod(*args, **kwargs)
Overloaded function.
eval_grad_g_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], grad_gxy: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_grad_g_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_grad_gi(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], i: int, grad_gi: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_grad_ψ(*args, **kwargs)
Overloaded function.
eval_grad_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_grad_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_hess_L_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], scale: float, v: numpy.ndarray[numpy.float64[m, 1]], Hv: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- eval_inactive_indices_res_lna(*args, **kwargs)
Overloaded function.
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], J: numpy.ndarray[numpy.int64[m, 1], flags.writeable]) -> int
eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.int64[m, 1]]
- eval_proj_diff_g(*args, **kwargs)
Overloaded function.
eval_proj_diff_g(self: alpaqa._alpaqa.float64.Problem, z: numpy.ndarray[numpy.float64[m, 1]], e: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None
eval_proj_diff_g(self: alpaqa._alpaqa.float64.Problem, z: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
- eval_proj_multipliers(self: alpaqa._alpaqa.float64.Problem, y: numpy.ndarray[numpy.float64[m, 1], flags.writeable], M: float) None
- eval_prox_grad_step(*args, **kwargs)
Overloaded function.
eval_prox_grad_step(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]], x̂: numpy.ndarray[numpy.float64[m, 1], flags.writeable], p: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_prox_grad_step(self: alpaqa._alpaqa.float64.Problem, γ: float, x: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], float]
- eval_ψ(*args, **kwargs)
Overloaded function.
eval_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], ŷ: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[float, numpy.ndarray[numpy.float64[m, 1]]]
- eval_ψ_grad_ψ(*args, **kwargs)
Overloaded function.
eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]], grad_ψ: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_n: numpy.ndarray[numpy.float64[m, 1], flags.writeable], work_m: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> float
eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.Problem, x: numpy.ndarray[numpy.float64[m, 1]], y: numpy.ndarray[numpy.float64[m, 1]], Σ: numpy.ndarray[numpy.float64[m, 1]]) -> Tuple[float, numpy.ndarray[numpy.float64[m, 1]]]
- get_box_C(self: alpaqa._alpaqa.float64.Problem) alpaqa._alpaqa.float64.Box
- get_box_D(self: alpaqa._alpaqa.float64.Problem) alpaqa._alpaqa.float64.Box
- provides_eval_f_g(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_f_grad_f(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_grad_L(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_grad_f_grad_g_prod(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_grad_gi(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_grad_ψ(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_hess_L_prod(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_hess_ψ_prod(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_inactive_indices_res_lna(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_ψ(self: alpaqa._alpaqa.float64.Problem) bool
- provides_eval_ψ_grad_ψ(self: alpaqa._alpaqa.float64.Problem) bool
- provides_get_box_C(self: alpaqa._alpaqa.float64.Problem) bool
- provides_get_box_D(self: alpaqa._alpaqa.float64.Problem) bool