alpaqa 1.0.0a9
Nonconvex constrained optimization
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Private Attributes | List of all members
AndersonAccel< Conf > Class Template Reference

#include <alpaqa/accelerators/anderson.hpp>

Detailed Description

template<Config Conf = DefaultConfig>
class alpaqa::AndersonAccel< Conf >

Anderson Acceleration.

Algorithm for accelerating fixed-point iterations for finding fixed points of a function \( g \), i.e. \( g(x^\star) = x^\star \), or equivalently, roots of the residual \( r(x) \triangleq g(x) - x \).

Definition at line 38 of file anderson.hpp.

+ Collaboration diagram for AndersonAccel< Conf >:

Public Types

using Params = AndersonAccelParams< config_t >
 

Public Member Functions

 AndersonAccel ()=default
 
 AndersonAccel (Params params)
 
 AndersonAccel (Params params, length_t n)
 
void resize (length_t n)
 Change the problem dimension.
 
void initialize (crvec g_0, crvec r_0)
 Call this function on the first iteration to initialize the accelerator.
 
void compute (crvec gₖ, crvec rₖ, rvec xₖ_aa)
 Compute the accelerated iterate \( x^k_\text{AA} \), given the function value at the current iterate \( g^k = g(x^k) \) and the corresponding residual \( r^k = g^k - x^k \).
 
void compute (crvec gₖ, vec &&rₖ, rvec xₖ_aa)
 Compute the accelerated iterate \( x^k_\text{AA} \), given the function value at the current iterate \( g^k = g(x^k) \) and the corresponding residual \( r^k = g^k - x^k \).
 
void reset ()
 Reset the accelerator (but keep the last function value and residual, so calling initialize is not necessary).
 
length_t n () const
 Get the problem dimension.
 
length_t history () const
 Get the maximum number of stored columns.
 
length_t current_history () const
 Get the number of columns currently stored in the buffer.
 
const Paramsget_params () const
 Get the parameters.
 
std::string get_name () const
 
void scale_R (real_t scal)
 Scale the factorization.
 

Private Attributes

Params params
 
LimitedMemoryQR< config_t > qr
 
mat G
 
vec rₗₐₛₜ
 
vec γ_LS
 
bool initialized = false
 

Member Typedef Documentation

◆ Params

using Params = AndersonAccelParams<config_t>

Definition at line 41 of file anderson.hpp.

Constructor & Destructor Documentation

◆ AndersonAccel() [1/3]

AndersonAccel ( )
default

◆ AndersonAccel() [2/3]

AndersonAccel ( Params  params)
inline
Parameters
paramsParameters.

Definition at line 46 of file anderson.hpp.

◆ AndersonAccel() [3/3]

AndersonAccel ( Params  params,
length_t  n 
)
inline
Parameters
paramsParameters.
nProblem dimension (size of the vectors).

Definition at line 51 of file anderson.hpp.

+ Here is the call graph for this function:

Member Function Documentation

◆ resize()

void resize ( length_t  n)
inline

Change the problem dimension.

Flushes the history.

Parameters
nProblem dimension (size of the vectors).

Definition at line 56 of file anderson.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ initialize()

void initialize ( crvec  g_0,
crvec  r_0 
)
inline

Call this function on the first iteration to initialize the accelerator.

Definition at line 66 of file anderson.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ compute() [1/2]

void compute ( crvec  gₖ,
crvec  rₖ,
rvec  xₖ_aa 
)
inline

Compute the accelerated iterate \( x^k_\text{AA} \), given the function value at the current iterate \( g^k = g(x^k) \) and the corresponding residual \( r^k = g^k - x^k \).

Definition at line 78 of file anderson.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ compute() [2/2]

void compute ( crvec  gₖ,
vec &&  rₖ,
rvec  xₖ_aa 
)
inline

Compute the accelerated iterate \( x^k_\text{AA} \), given the function value at the current iterate \( g^k = g(x^k) \) and the corresponding residual \( r^k = g^k - x^k \).

Definition at line 88 of file anderson.hpp.

+ Here is the call graph for this function:

◆ reset()

void reset ( )
inline

Reset the accelerator (but keep the last function value and residual, so calling initialize is not necessary).

Definition at line 100 of file anderson.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ n()

length_t n ( ) const
inline

Get the problem dimension.

Definition at line 108 of file anderson.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ history()

length_t history ( ) const
inline

Get the maximum number of stored columns.

Definition at line 110 of file anderson.hpp.

+ Here is the call graph for this function:

◆ current_history()

length_t current_history ( ) const
inline

Get the number of columns currently stored in the buffer.

Definition at line 112 of file anderson.hpp.

+ Here is the call graph for this function:

◆ get_params()

const Params & get_params ( ) const
inline

Get the parameters.

Definition at line 115 of file anderson.hpp.

+ Here is the caller graph for this function:

◆ get_name()

std::string get_name ( ) const
inline

Definition at line 117 of file anderson.hpp.

◆ scale_R()

void scale_R ( real_t  scal)
inline

Scale the factorization.

Definition at line 122 of file anderson.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

Member Data Documentation

◆ params

Params params
private

Definition at line 125 of file anderson.hpp.

◆ qr

LimitedMemoryQR<config_t> qr
private

Definition at line 126 of file anderson.hpp.

◆ G

mat G
private

Definition at line 127 of file anderson.hpp.

◆ rₗₐₛₜ

vec rₗₐₛₜ
private

Definition at line 128 of file anderson.hpp.

◆ γ_LS

vec γ_LS
private

Definition at line 129 of file anderson.hpp.

◆ initialized

bool initialized = false
private

Definition at line 130 of file anderson.hpp.


The documentation for this class was generated from the following file: