19template <
class DirectionProv
iderT>
21 return "PANTRSolver<" + std::string(direction.get_name()) +
">";
24template <
class DirectionProv
iderT>
42 using std::chrono::nanoseconds;
43 auto os = opts.os ? opts.os : this->os;
44 auto start_time = std::chrono::steady_clock::now();
47 const auto n = problem.get_n();
48 const auto m = problem.get_m();
59 real_t ψx̂ = NaN<config_t>;
62 real_t pᵀp = NaN<config_t>;
63 real_t grad_ψᵀp = NaN<config_t>;
64 real_t hx̂ = NaN<config_t>;
68 real_t fbe()
const {
return ψx + hx̂ + pᵀp / (2 * γ) + grad_ψᵀp; }
71 } iterates[3]{{n, m}, {n, m}, {n, m}};
72 Iterate *curr = &iterates[0];
73 Iterate *prox = &iterates[1];
74 Iterate *cand = &iterates[2];
76 bool need_grad_ψx̂ = Helpers::stop_crit_requires_grad_ψx̂(params.stop_crit);
78 vec work_n(n), work_m(m);
80 std::chrono::nanoseconds direction_duration{};
84 auto eval_ψ_grad_ψ = [&problem, &y, &Σ, &work_n, &work_m](Iterate &i) {
85 i.ψx = problem.eval_ψ_grad_ψ(i.x, y, Σ, i.grad_ψ, work_n, work_m);
87 auto eval_prox_grad_step = [&problem](Iterate &i) {
88 i.hx̂ = problem.eval_prox_grad_step(i.γ, i.x, i.grad_ψ, i.x̂, i.p);
89 i.pᵀp = i.p.squaredNorm();
90 i.grad_ψᵀp = i.p.dot(i.grad_ψ);
92 auto eval_ψx̂ = [&problem, &y, &Σ](Iterate &i) {
93 i.ψx̂ = problem.eval_ψ(i.x̂, y, Σ, i.ŷx̂);
95 auto eval_grad_ψx̂ = [&problem, &work_n](Iterate &i,
rvec grad_ψx̂) {
96 problem.eval_grad_L(i.x̂, i.ŷx̂, grad_ψx̂, work_n);
101 auto qub_violated = [
this](
const Iterate &i) {
103 (1 + std::abs(i.ψx)) * params.quadratic_upperbound_tolerance_factor;
104 return i.ψx̂ > i.ψx + i.grad_ψᵀp +
real_t(0.5) * i.L * i.pᵀp + margin;
106 auto backtrack_qub = [&](Iterate &i) {
107 while (i.L < params.L_max && qub_violated(i)) {
111 eval_prox_grad_step(i);
118 std::array<char, 64> print_buf;
119 auto print_real = [
this, &print_buf](
real_t x) {
122 auto print_real3 = [&print_buf](
real_t x) {
129 *os <<
"┌─[PANTR]\n";
131 *os <<
"├─ " << std::setw(6) << k <<
" ──\n";
132 *os <<
"│ φγ = " << print_real(φₖ)
133 <<
", ψ = " << print_real(ψₖ)
134 <<
", ‖∇ψ‖ = " << print_real(grad_ψₖ.norm())
135 <<
", ‖p‖ = " << print_real(std::sqrt(pₖᵀpₖ))
136 <<
", γ = " << print_real(γₖ)
137 <<
", Δ = " << print_real(Δₖ)
138 <<
", ε = " << print_real(εₖ) <<
'\n';
140 auto print_progress_2 = [&](
crvec qₖ,
real_t ρₖ,
bool accept,
141 std::chrono::nanoseconds direction_duration) {
142 *os <<
"│ ‖q‖ = " << print_real(qₖ.norm())
143 <<
", ρ = " << print_real3(ρₖ)
146 static_cast<real_t>(1e6) *
147 std::chrono::duration<real_t>(direction_duration).count())
149 << (accept ?
"\033[0;32maccepted\033[0m"
150 :
"\033[0;35mrejected\033[0m")
154 *os <<
"└─ " << status <<
" ──"
157 auto do_progress_cb = [
this, &s, &problem, &Σ, &y,
158 &opts](
unsigned k, Iterate &it,
crvec q,
176 .grad_ψ_hat = grad_ψx̂,
185 .outer_iter = opts.outer_iter,
198 if (params.Lipschitz.L_0 <= 0) {
199 curr->L = Helpers::initial_lipschitz_estimate(
200 problem, curr->x, y, Σ, params.Lipschitz.ε, params.Lipschitz.δ,
201 params.L_min, params.L_max,
202 curr->ψx, curr->grad_ψ, curr->x̂, cand->grad_ψ,
207 curr->L = params.Lipschitz.L_0;
209 eval_ψ_grad_ψ(*curr);
211 if (not std::isfinite(curr->L)) {
215 curr->γ = params.Lipschitz.Lγ_factor / curr->L;
219 eval_prox_grad_step(*curr);
221 backtrack_qub(*curr);
226 bool accept_candidate =
false;
228 unsigned no_progress = 0;
230 real_t Δ = params.initial_radius;
231 if (!std::isfinite(Δ) || Δ == 0)
232 Δ =
real_t(0.1) * curr->grad_ψ.norm();
233 Δ = std::fmax(Δ, params.min_radius);
247 eval_grad_ψx̂(*curr, grad_ψx̂);
248 bool have_grad_ψx̂ = need_grad_ψx̂;
250 real_t εₖ = Helpers::calc_error_stop_crit(
251 problem, params.stop_crit, curr->p, curr->γ, curr->x, curr->x̂,
252 curr->ŷx̂, curr->grad_ψ, grad_ψx̂, work_n, cand->p);
257 params.print_interval != 0 && k % params.print_interval == 0;
259 print_progress_1(k, curr->fbe(), curr->ψx, curr->grad_ψ, curr->pᵀp,
264 auto time_elapsed = std::chrono::steady_clock::now() - start_time;
265 auto stop_status = Helpers::check_all_stop_conditions(
266 params, opts, time_elapsed, k, stop_signal, εₖ, no_progress);
268 do_progress_cb(k, *curr, null_vec<config_t>, grad_ψx̂, NaN<config_t>,
269 NaN<config_t>, εₖ, stop_status);
270 bool do_final_print = params.print_interval != 0;
271 if (!do_print && do_final_print)
272 print_progress_1(k, curr->fbe(), curr->ψx, curr->grad_ψ,
273 curr->pᵀp, curr->γ, εₖ, Δ);
274 if (do_print || do_final_print)
275 print_progress_n(stop_status);
279 opts.always_overwrite_results) {
281 if (err_z.size() > 0)
282 err_z = Σ.asDiagonal().inverse() * (ŷ - y);
283 x = std::move(curr->x̂);
284 y = std::move(curr->ŷx̂);
289 s.
elapsed_time = duration_cast<nanoseconds>(time_elapsed);
301 auto compute_FBS_step = [&] {
302 assert(curr->L >= params.L_max || !qub_violated(*curr));
304 if (not have_grad_ψx̂)
305 eval_grad_ψx̂(*curr, grad_ψx̂);
306 have_grad_ψx̂ =
true;
308 prox->ψx = curr->ψx̂;
309 prox->grad_ψ.swap(grad_ψx̂);
312 eval_ψ_grad_ψ(*prox);
313 eval_prox_grad_step(*prox);
322 direction.initialize(problem, y, Σ, prox->γ, prox->x, prox->x̂,
323 prox->p, prox->grad_ψ);
327 auto compute_candidate_fbe = [&](
crvec q) {
329 cand->x = prox->x + q;
331 eval_ψ_grad_ψ(*cand);
335 eval_prox_grad_step(*cand);
338 if (params.compute_ratio_using_new_stepsize) {
340 backtrack_qub(*cand);
345 auto compute_candidate_ratio = [
this, prox, cand](
real_t q_model) {
347 real_t ϕγ_next = cand->fbe();
348 real_t margin = (1 + std::abs(ϕγ)) * params.TR_tolerance_factor;
349 real_t ρ = (ϕγ - ϕγ_next + margin) / (-q_model);
350 return params.ratio_approx_fbe_quadratic_model
351 ? ρ / (1 - params.Lipschitz.Lγ_factor)
358 if (ρ >= params.ratio_threshold_good)
359 return std::max(params.radius_factor_good * q.norm(), old_Δ);
361 else if (ρ >= params.ratio_threshold_acceptable)
362 return old_Δ * params.radius_factor_acceptable;
365 return params.radius_factor_rejected * q.norm();
369 auto compute_trust_region_step = [&](
rvec q,
real_t Δ) {
370 auto t0 = std::chrono::steady_clock::now();
371 real_t q_model = direction.apply(prox->γ, prox->x, prox->x̂, prox->p,
373 auto t1 = std::chrono::steady_clock::now();
374 direction_duration = t1 - t0;
377 if (not q.allFinite()) {
378 *os <<
"Direction fail: not finite" << std::endl;
381 return +inf<config_t>;
384 *os <<
"Direction fail: no decrease on model (" << q_model
393 accept_candidate =
false;
394 bool accelerated_iteration = k > 0 || direction.has_initial_direction();
395 if (accelerated_iteration && !params.disable_acceleration) {
396 if (
auto q_model = compute_trust_region_step(q, Δ); q_model < 0) {
397 compute_candidate_fbe(q);
398 ρ = compute_candidate_ratio(q_model);
399 accept_candidate = ρ >= params.ratio_threshold_acceptable;
400 Δ = std::fmax(compute_updated_radius(q, ρ, Δ),
409 if (accept_candidate) {
411 if (!params.compute_ratio_using_new_stepsize) {
413 backtrack_qub(*cand);
416 if (prox->γ != cand->γ) {
417 direction.changed_γ(cand->γ, prox->γ);
418 if (params.recompute_last_prox_step_after_direction_reset) {
419 std::tie(prox->γ, prox->L) = std::tie(cand->γ, cand->L);
420 eval_prox_grad_step(*prox);
425 prox->γ, cand->γ, prox->x, cand->x, prox->p, cand->p,
426 prox->grad_ψ, cand->grad_ψ);
429 print_progress_2(q, ρ,
true, direction_duration);
431 std::swap(curr, cand);
435 if (accelerated_iteration)
439 backtrack_qub(*prox);
440 if (prox->γ != curr->γ) {
441 direction.changed_γ(prox->γ, curr->γ);
442 if (params.recompute_last_prox_step_after_direction_reset) {
443 std::tie(curr->γ, curr->L) = std::tie(prox->γ, prox->L);
444 eval_prox_grad_step(*curr);
448 if (params.update_direction_on_prox_step)
450 curr->γ, prox->γ, curr->x, prox->x, curr->p, prox->p,
451 curr->grad_ψ, prox->grad_ψ);
452 if (do_print && accelerated_iteration)
453 print_progress_2(q, ρ,
false, direction_duration);
455 std::swap(curr, prox);
470 throw std::logic_error(
"[PANTR] loop error");
std::string get_name() const
Stats operator()(const Problem &problem, const SolveOptions &opts, rvec x, rvec y, crvec Σ, rvec err_z)
unsigned direction_update_rejected
unsigned accelerated_step_rejected
SolverStatus
Exit status of a numerical solver such as ALM or PANOC.
@ Interrupted
Solver was interrupted by the user.
@ Converged
Converged and reached given tolerance.
@ NotFinite
Intermediate results were infinite or not-a-number.
std::chrono::nanoseconds time_progress_callback
std::chrono::nanoseconds elapsed_time
typename Conf::real_t real_t
unsigned direction_failures
typename Conf::length_t length_t
std::string_view float_to_str_vw(auto &buf, double value, int precision=std::numeric_limits< double >::max_digits10)
typename Conf::crvec crvec