alpaqa 1.0.0a9
Nonconvex constrained optimization
Loading...
Searching...
No Matches
pantr.tpp
Go to the documentation of this file.
1#pragma once
2
4
5#include <cassert>
6#include <cmath>
7#include <iomanip>
8#include <iostream>
9#include <stdexcept>
10
15#include <alpaqa/util/timed.hpp>
16
17namespace alpaqa {
18
19template <class DirectionProviderT>
21 return "PANTRSolver<" + std::string(direction.get_name()) + ">";
22}
23
24template <class DirectionProviderT>
26 /// [in] Problem description
27 const Problem &problem,
28 /// [in] Solve options
29 const SolveOptions &opts,
30 /// [inout] Decision variable @f$ x @f$
31 rvec x,
32 /// [inout] Lagrange multipliers @f$ y @f$
33 rvec y,
34 /// [in] Constraint weights @f$ \Sigma @f$
35 crvec Σ,
36 /// [out] Slack variable error @f$ g(x) - \Pi_D(g(x) + \Sigma^{-1} y) @f$
37 rvec err_z) -> Stats {
38
39 if (opts.check)
40 problem.check();
41
42 using std::chrono::nanoseconds;
43 auto os = opts.os ? opts.os : this->os;
44 auto start_time = std::chrono::steady_clock::now();
45 Stats s;
46
47 const auto n = problem.get_n();
48 const auto m = problem.get_m();
49
50 // Represents an iterate in the algorithm, keeping track of some
51 // intermediate values and function evaluations.
52 struct Iterate {
53 vec x; //< Decision variables
54 vec x̂; //< Decision variables after proximal gradient step
55 vec grad_ψ; //< Gradient of cost in x
56 vec p; //< Proximal gradient step in x
57 vec ŷx̂; //< Candidate Lagrange multipliers in x̂
58 real_t ψx = NaN<config_t>; //< Cost in x
59 real_t ψx̂ = NaN<config_t>; //< Cost in x̂
60 real_t γ = NaN<config_t>; //< Step size γ
61 real_t L = NaN<config_t>; //< Lipschitz estimate L
62 real_t pᵀp = NaN<config_t>; //< Norm squared of p
63 real_t grad_ψᵀp = NaN<config_t>; //< Dot product of gradient and p
64 real_t hx̂ = NaN<config_t>; //< Non-smooth function value in x̂
65
66 // @pre @ref ψx, @ref hx̂ @ref pᵀp, @ref grad_ψᵀp
67 // @return φγ
68 real_t fbe() const { return ψx + hx̂ + pᵀp / (2 * γ) + grad_ψᵀp; }
69
70 Iterate(length_t n, length_t m) : x(n), x̂(n), grad_ψ(n), p(n), ŷx̂(m) {}
71 } iterates[3]{{n, m}, {n, m}, {n, m}};
72 Iterate *curr = &iterates[0];
73 Iterate *prox = &iterates[1];
74 Iterate *cand = &iterates[2];
75
76 bool need_grad_ψx̂ = Helpers::stop_crit_requires_grad_ψx̂(params.stop_crit);
77 vec grad_ψx̂(n);
78 vec work_n(n), work_m(m);
79 vec q(n); // (quasi-)Newton step Hₖ pₖ
80 std::chrono::nanoseconds direction_duration{};
81
82 // Problem functions -------------------------------------------------------
83
84 auto eval_ψ_grad_ψ = [&problem, &y, &Σ, &work_n, &work_m](Iterate &i) {
85 i.ψx = problem.eval_ψ_grad_ψ(i.x, y, Σ, i.grad_ψ, work_n, work_m);
86 };
87 auto eval_prox_grad_step = [&problem](Iterate &i) {
88 i.hx̂ = problem.eval_prox_grad_step(i.γ, i.x, i.grad_ψ, i.x̂, i.p);
89 i.pᵀp = i.p.squaredNorm();
90 i.grad_ψᵀp = i.p.dot(i.grad_ψ);
91 };
92 auto eval_ψx̂ = [&problem, &y, &Σ](Iterate &i) {
93 i.ψx̂ = problem.eval_ψ(i.x̂, y, Σ, i.ŷx̂);
94 };
95 auto eval_grad_ψx̂ = [&problem, &work_n](Iterate &i, rvec grad_ψx̂) {
96 problem.eval_grad_L(i.x̂, i.ŷx̂, grad_ψx̂, work_n);
97 };
98
99 // Helper functions --------------------------------------------------------
100
101 auto qub_violated = [this](const Iterate &i) {
102 real_t margin =
103 (1 + std::abs(i.ψx)) * params.quadratic_upperbound_tolerance_factor;
104 return i.ψx̂ > i.ψx + i.grad_ψᵀp + real_t(0.5) * i.L * i.pᵀp + margin;
105 };
106 auto backtrack_qub = [&](Iterate &i) {
107 while (i.L < params.L_max && qub_violated(i)) {
108 i.γ /= 2;
109 i.L *= 2;
110 // Compute x̂, p, ψ(x̂)
111 eval_prox_grad_step(i);
112 eval_ψx̂(i);
113 }
114 };
115
116 // Printing ----------------------------------------------------------------
117
118 std::array<char, 64> print_buf;
119 auto print_real = [this, &print_buf](real_t x) {
120 return float_to_str_vw(print_buf, x, params.print_precision);
121 };
122 auto print_real3 = [&print_buf](real_t x) {
123 return float_to_str_vw(print_buf, x, 3);
124 };
125
126 auto print_progress_1 = [&](unsigned k, real_t φₖ, real_t ψₖ, crvec grad_ψₖ,
127 real_t pₖᵀpₖ, real_t γₖ, real_t εₖ, real_t Δₖ) {
128 if (k == 0)
129 *os << "┌─[PANTR]\n";
130 else
131 *os << "├─ " << std::setw(6) << k << " ──\n";
132 *os << "│ φγ = " << print_real(φₖ) //
133 << ", ψ = " << print_real(ψₖ) //
134 << ", ‖∇ψ‖ = " << print_real(grad_ψₖ.norm()) //
135 << ", ‖p‖ = " << print_real(std::sqrt(pₖᵀpₖ)) //
136 << ", γ = " << print_real(γₖ) //
137 << ", Δ = " << print_real(Δₖ) //
138 << ", ε = " << print_real(εₖ) << '\n';
139 };
140 auto print_progress_2 = [&](crvec qₖ, real_t ρₖ, bool accept,
141 std::chrono::nanoseconds direction_duration) {
142 *os << "│ ‖q‖ = " << print_real(qₖ.norm()) //
143 << ", ρ = " << print_real3(ρₖ) //
144 << ", time = "
145 << print_real3(
146 static_cast<real_t>(1e6) *
147 std::chrono::duration<real_t>(direction_duration).count())
148 << " µs, "
149 << (accept ? "\033[0;32maccepted\033[0m"
150 : "\033[0;35mrejected\033[0m") //
151 << std::endl; // Flush for Python buffering
152 };
153 auto print_progress_n = [&](SolverStatus status) {
154 *os << "└─ " << status << " ──"
155 << std::endl; // Flush for Python buffering
156 };
157 auto do_progress_cb = [this, &s, &problem, &Σ, &y,
158 &opts](unsigned k, Iterate &it, crvec q,
159 crvec grad_ψx̂, real_t Δ, real_t ρ, real_t εₖ,
160 SolverStatus status) {
161 if (!progress_cb)
162 return;
165 progress_cb(ProgressInfo{
166 .k = k,
167 .status = status,
168 .x = it.x,
169 .p = it.p,
170 .norm_sq_p = it.pᵀp,
171 .x̂ = it.x̂,
172 .φγ = it.fbe(),
173 .ψ = it.ψx,
174 .grad_ψ = it.grad_ψ,
175 .ψ_hat = it.ψx̂,
176 .grad_ψ_hat = grad_ψx̂,
177 .q = q,
178 .L = it.L,
179 .γ = it.γ,
180 .Δ = Δ,
181 .ρ = ρ,
182 .ε = εₖ,
183 .Σ = Σ,
184 .y = y,
185 .outer_iter = opts.outer_iter,
186 .problem = &problem,
187 .params = &params,
188 });
189 };
190
191 // Initialization ----------------------------------------------------------
192
193 curr->x = x;
194
195 // Estimate Lipschitz constant ---------------------------------------------
196
197 // Finite difference approximation of ∇²ψ in starting point
198 if (params.Lipschitz.L_0 <= 0) {
199 curr->L = Helpers::initial_lipschitz_estimate(
200 problem, curr->x, y, Σ, params.Lipschitz.ε, params.Lipschitz.δ,
201 params.L_min, params.L_max,
202 /* in ⟹ out */ curr->ψx, curr->grad_ψ, curr->x̂, cand->grad_ψ,
203 work_n, work_m);
204 }
205 // Initial Lipschitz constant provided by the user
206 else {
207 curr->L = params.Lipschitz.L_0;
208 // Calculate ψ(xₖ), ∇ψ(x₀)
209 eval_ψ_grad_ψ(*curr);
210 }
211 if (not std::isfinite(curr->L)) {
213 return s;
214 }
215 curr->γ = params.Lipschitz.Lγ_factor / curr->L;
216
217 // First proximal gradient step --------------------------------------------
218
219 eval_prox_grad_step(*curr);
220 eval_ψx̂(*curr);
221 backtrack_qub(*curr);
222
223 // Loop data ---------------------------------------------------------------
224
225 unsigned k = 0; // iteration
226 bool accept_candidate = false;
227 // Keep track of how many successive iterations didn't update the iterate
228 unsigned no_progress = 0;
229 // Trust radius
230 real_t Δ = params.initial_radius;
231 if (!std::isfinite(Δ) || Δ == 0)
232 Δ = real_t(0.1) * curr->grad_ψ.norm();
233 Δ = std::fmax(Δ, params.min_radius);
234 // Reduction ratio
235 real_t ρ = NaN<config_t>;
236
237 // Main PANTR loop
238 // =========================================================================
239
240 ScopedMallocBlocker mb; // Don't allocate in the inner loop
241 while (true) {
242
243 // Check stopping criteria ---------------------------------------------
244
245 // Calculate ∇ψ(x̂ₖ)
246 if (need_grad_ψx̂)
247 eval_grad_ψx̂(*curr, grad_ψx̂);
248 bool have_grad_ψx̂ = need_grad_ψx̂;
249
250 real_t εₖ = Helpers::calc_error_stop_crit(
251 problem, params.stop_crit, curr->p, curr->γ, curr->x, curr->x̂,
252 curr->ŷx̂, curr->grad_ψ, grad_ψx̂, work_n, cand->p);
253
254 // Print progress ------------------------------------------------------
255
256 bool do_print =
257 params.print_interval != 0 && k % params.print_interval == 0;
258 if (do_print)
259 print_progress_1(k, curr->fbe(), curr->ψx, curr->grad_ψ, curr->pᵀp,
260 curr->γ, εₖ, Δ);
261
262 // Return solution -----------------------------------------------------
263
264 auto time_elapsed = std::chrono::steady_clock::now() - start_time;
265 auto stop_status = Helpers::check_all_stop_conditions(
266 params, opts, time_elapsed, k, stop_signal, εₖ, no_progress);
267 if (stop_status != SolverStatus::Busy) {
268 do_progress_cb(k, *curr, null_vec<config_t>, grad_ψx̂, NaN<config_t>,
269 NaN<config_t>, εₖ, stop_status);
270 bool do_final_print = params.print_interval != 0;
271 if (!do_print && do_final_print)
272 print_progress_1(k, curr->fbe(), curr->ψx, curr->grad_ψ,
273 curr->pᵀp, curr->γ, εₖ, Δ);
274 if (do_print || do_final_print)
275 print_progress_n(stop_status);
276 // Overwrite output arguments
277 if (stop_status == SolverStatus::Converged ||
278 stop_status == SolverStatus::Interrupted ||
279 opts.always_overwrite_results) {
280 auto &ŷ = curr->ŷx̂;
281 if (err_z.size() > 0)
282 err_z = Σ.asDiagonal().inverse() * (ŷ - y);
283 x = std::move(curr->x̂);
284 y = std::move(curr->ŷx̂);
285 }
286 // Save statistics
287 s.iterations = k;
288 s.ε = εₖ;
289 s.elapsed_time = duration_cast<nanoseconds>(time_elapsed);
290 s.status = stop_status;
291 s.final_γ = curr->γ;
292 s.final_ψ = curr->ψx̂;
293 s.final_h = curr->hx̂;
294 s.final_φγ = curr->fbe();
295 return s;
296 }
297
298 // Perform FBS step ----------------------------------------------------
299
300 // x̂ₖ = xₖ + pₖ
301 auto compute_FBS_step = [&] {
302 assert(curr->L >= params.L_max || !qub_violated(*curr));
303 // Calculate ∇ψ(x̂ₖ)
304 if (not have_grad_ψx̂)
305 eval_grad_ψx̂(*curr, grad_ψx̂);
306 have_grad_ψx̂ = true;
307 prox->x = curr->x̂;
308 prox->ψx = curr->ψx̂;
309 prox->grad_ψ.swap(grad_ψx̂);
310 prox->γ = curr->γ;
311 prox->L = curr->L;
312 eval_ψ_grad_ψ(*prox);
313 eval_prox_grad_step(*prox);
314 };
315
316 // store x̂ₖ in prox->x
317 compute_FBS_step();
318
319 // Initialize direction
320 if (k == 0) {
322 direction.initialize(problem, y, Σ, prox->γ, prox->x, prox->x̂,
323 prox->p, prox->grad_ψ);
324 }
325
326 // Check if x̂ₖ + q provides sufficient decrease
327 auto compute_candidate_fbe = [&](crvec q) {
328 // Candidate step xₖ₊₁ = x̂ₖ + q
329 cand->x = prox->x + q;
330 // Compute ψ(xₖ₊₁), ∇ψ(xₖ₊₁)
331 eval_ψ_grad_ψ(*cand);
332 cand->γ = prox->γ;
333 cand->L = prox->L;
334 // Compute x̂ₖ₊₁, pₖ₊₁, ψ(x̂ₖ₊₁)
335 eval_prox_grad_step(*cand);
336
337 // Quadratic upper bound in candidate point
338 if (params.compute_ratio_using_new_stepsize) {
339 eval_ψx̂(*cand);
340 backtrack_qub(*cand);
341 }
342 };
343
344 // Check ratio ρ
345 auto compute_candidate_ratio = [this, prox, cand](real_t q_model) {
346 real_t ϕγ = prox->fbe();
347 real_t ϕγ_next = cand->fbe();
348 real_t margin = (1 + std::abs(ϕγ)) * params.TR_tolerance_factor;
349 real_t ρ = (ϕγ - ϕγ_next + margin) / (-q_model);
350 return params.ratio_approx_fbe_quadratic_model
351 ? ρ / (1 - params.Lipschitz.Lγ_factor)
352 : ρ;
353 };
354
355 // update trust radius accordingly
356 auto compute_updated_radius = [this](crvec q, real_t ρ, real_t old_Δ) {
357 // Very successful TR step
358 if (ρ >= params.ratio_threshold_good)
359 return std::max(params.radius_factor_good * q.norm(), old_Δ);
360 // Successful TR step
361 else if (ρ >= params.ratio_threshold_acceptable)
362 return old_Δ * params.radius_factor_acceptable;
363 // Unsuccessful TR step
364 else
365 return params.radius_factor_rejected * q.norm();
366 };
367
368 // Compute trust region direction from x̂ₖ
369 auto compute_trust_region_step = [&](rvec q, real_t Δ) {
370 auto t0 = std::chrono::steady_clock::now();
371 real_t q_model = direction.apply(prox->γ, prox->x, prox->x̂, prox->p,
372 prox->grad_ψ, Δ, q);
373 auto t1 = std::chrono::steady_clock::now();
374 direction_duration = t1 - t0;
375
376 // Check if step is valid
377 if (not q.allFinite()) {
378 *os << "Direction fail: not finite" << std::endl;
380 direction.reset();
381 return +inf<config_t>;
382 }
383 if (q_model >= 0) {
384 *os << "Direction fail: no decrease on model (" << q_model
385 << ')' << std::endl;
387 direction.reset(); // Is there anything else we can do?
388 }
389 return q_model;
390 };
391
392 // Solve TR subproblem and update radius
393 accept_candidate = false;
394 bool accelerated_iteration = k > 0 || direction.has_initial_direction();
395 if (accelerated_iteration && !params.disable_acceleration) {
396 if (auto q_model = compute_trust_region_step(q, Δ); q_model < 0) {
397 compute_candidate_fbe(q);
398 ρ = compute_candidate_ratio(q_model);
399 accept_candidate = ρ >= params.ratio_threshold_acceptable;
400 Δ = std::fmax(compute_updated_radius(q, ρ, Δ),
401 params.min_radius);
402 }
403 }
404
405 // Progress callback
406 do_progress_cb(k, *curr, q, grad_ψx̂, Δ, ρ, εₖ, SolverStatus::Busy);
407
408 // Accept TR step
409 if (accept_candidate) {
410 // Quadratic upper bound in next iterate
411 if (!params.compute_ratio_using_new_stepsize) {
412 eval_ψx̂(*cand);
413 backtrack_qub(*cand);
414 }
415 // Flush L-BFGS if γ changed
416 if (prox->γ != cand->γ) {
417 direction.changed_γ(cand->γ, prox->γ);
418 if (params.recompute_last_prox_step_after_direction_reset) {
419 std::tie(prox->γ, prox->L) = std::tie(cand->γ, cand->L);
420 eval_prox_grad_step(*prox);
421 }
422 }
423 // update L-BFGS
424 s.direction_update_rejected += not direction.update(
425 prox->γ, cand->γ, prox->x, cand->x, prox->p, cand->p,
426 prox->grad_ψ, cand->grad_ψ);
427
428 if (do_print)
429 print_progress_2(q, ρ, true, direction_duration);
430 // Candidate becomes new iterate
431 std::swap(curr, cand);
432 }
433 // Fall back to proximal gradient step
434 else {
435 if (accelerated_iteration)
437 // Quadratic upper bound in x̂ₖ
438 eval_ψx̂(*prox);
439 backtrack_qub(*prox);
440 if (prox->γ != curr->γ) {
441 direction.changed_γ(prox->γ, curr->γ);
442 if (params.recompute_last_prox_step_after_direction_reset) {
443 std::tie(curr->γ, curr->L) = std::tie(prox->γ, prox->L);
444 eval_prox_grad_step(*curr);
445 }
446 }
447 // update direction
448 if (params.update_direction_on_prox_step)
449 s.direction_update_rejected += not direction.update(
450 curr->γ, prox->γ, curr->x, prox->x, curr->p, prox->p,
451 curr->grad_ψ, prox->grad_ψ);
452 if (do_print && accelerated_iteration)
453 print_progress_2(q, ρ, false, direction_duration);
454 // x̂ₖ becomes new iterate
455 std::swap(curr, prox);
456 }
457
458#ifndef NDEBUG
459 { // Make sure that we don't rely on any data from previous iterations,
460 // reset to NaN:
462 *prox = {n, m};
463 *cand = {n, m};
464 }
465#endif
466
467 // Advance step --------------------------------------------------------
468 ++k;
469 }
470 throw std::logic_error("[PANTR] loop error");
471}
472
473} // namespace alpaqa
std::string get_name() const
Definition: pantr.tpp:20
Stats operator()(const Problem &problem, const SolveOptions &opts, rvec x, rvec y, crvec Σ, rvec err_z)
Definition: pantr.tpp:25
unsigned direction_update_rejected
Definition: pantr.hpp:105
real_t final_φγ
Definition: pantr.hpp:109
unsigned accelerated_step_rejected
Definition: pantr.hpp:102
SolverStatus
Exit status of a numerical solver such as ALM or PANOC.
@ Interrupted
Solver was interrupted by the user.
@ Busy
In progress.
@ Converged
Converged and reached given tolerance.
@ NotFinite
Intermediate results were infinite or not-a-number.
std::chrono::nanoseconds time_progress_callback
Definition: pantr.hpp:100
std::chrono::nanoseconds elapsed_time
Definition: pantr.hpp:99
typename Conf::real_t real_t
Definition: config.hpp:63
unsigned direction_failures
Definition: pantr.hpp:104
typename Conf::length_t length_t
Definition: config.hpp:74
typename Conf::rvec rvec
Definition: config.hpp:67
std::string_view float_to_str_vw(auto &buf, double value, int precision=std::numeric_limits< double >::max_digits10)
Definition: print.tpp:39
typename Conf::crvec crvec
Definition: config.hpp:68
typename Conf::vec vec
Definition: config.hpp:64
unsigned iterations
Definition: pantr.hpp:101
SolverStatus status
Definition: pantr.hpp:97