#include <alpaqa/problem/box-constr-problem.hpp>
Implements common problem functions for minimization problems with box constraints.
Meant to be used as a base class for custom problem implementations. Supports optional \( \ell_1 \)-regularization.
Definition at line 16 of file box-constr-problem.hpp.
Public Types | |
using | Box = alpaqa::Box< config_t > |
Static Public Member Functions | |
static real_t | eval_proj_grad_step_box (const Box &C, real_t γ, crvec x, crvec grad_ψ, rvec x̂, rvec p) |
Projected gradient step for rectangular box C. | |
static void | eval_prox_grad_step_box_l1_impl (const Box &C, const auto &λ, real_t γ, crvec x, crvec grad_ψ, rvec x̂, rvec p) |
Proximal gradient step for rectangular box C with ℓ₁-regularization. | |
static real_t | eval_prox_grad_step_box_l1 (const Box &C, const auto &λ, real_t γ, crvec x, crvec grad_ψ, rvec x̂, rvec p) |
Proximal gradient step for rectangular box C with ℓ₁-regularization. | |
static real_t | eval_prox_grad_step_box_l1_scal (const Box &C, real_t λ, real_t γ, crvec x, crvec grad_ψ, rvec x̂, rvec p) |
Proximal gradient step for rectangular box C with ℓ₁-regularization. | |
static void | eval_proj_multipliers_box (const Box &D, rvec y, real_t M, index_t penalty_alm_split) |
Public Attributes | |
length_t | n |
Number of decision variables, dimension of x. | |
length_t | m |
Number of constraints, dimension of g(x) and z. | |
Box | C {this->n} |
Constraints of the decision variables, \( x \in C \). | |
Box | D {this->m} |
Other constraints, \( g(x) \in D \). | |
vec | l1_reg {} |
\( \ell_1 \) (1-norm) regularization parameter. | |
index_t | penalty_alm_split = 0 |
Components of the constraint function with indices below this number are handled using a quadratic penalty method rather than using an augmented Lagrangian method. | |
using Box = alpaqa::Box<config_t> |
Definition at line 19 of file box-constr-problem.hpp.
|
inline |
Create a problem with inactive boxes \( (-\infty, +\infty) \), with no \( \ell_1 \)-regularization, and all general constraints handled using ALM.
n | Number of decision variables |
m | Number of constraints |
Definition at line 29 of file box-constr-problem.hpp.
|
inline |
Definition at line 33 of file box-constr-problem.hpp.
|
default |
|
defaultnoexcept |
Change the dimensions of the problem (number of decision variables and number of constaints).
Destructive: resizes and/or resets the members C, D, l1_reg and penalty_alm_split.
Definition at line 41 of file box-constr-problem.hpp.
|
default |
|
defaultnoexcept |
|
inline |
Number of decision variables, n.
Definition at line 75 of file box-constr-problem.hpp.
|
inline |
Number of constraints, m.
Definition at line 77 of file box-constr-problem.hpp.
|
inlinestatic |
Projected gradient step for rectangular box C.
\[ \begin{aligned} \hat x &= \Pi_C(x - \gamma\nabla\psi(x)) \\ p &= \hat x - x \\ &= \max(\underline x - x, \;\min(-\gamma\nabla\psi(x), \overline x - x) \end{aligned} \]
Definition at line 84 of file box-constr-problem.hpp.
|
inlinestatic |
Proximal gradient step for rectangular box C with ℓ₁-regularization.
\[ \begin{aligned} h(x) &= \|x\|_1 + \delta_C(x) \\ \hat x &= \prox_{\gamma h}(x - \gamma\nabla\psi(x)) \\ &= -\max\big( x - \overline x, \;\min\big( x - \underline x, \;\min\big( \gamma(\nabla\psi(x) + \lambda), \;\max\big( \gamma(\nabla\psi(x) - \lambda), x \big) \big) \big) \big) \end{aligned} \]
Definition at line 107 of file box-constr-problem.hpp.
|
inlinestatic |
Proximal gradient step for rectangular box C with ℓ₁-regularization.
\[ \begin{aligned} h(x) &= \|x\|_1 + \delta_C(x) \\ \hat x &= \prox_{\gamma h}(x - \gamma\nabla\psi(x)) \\ &= -\max\big( x - \overline x, \;\min\big( x - \underline x, \;\min\big( \gamma(\nabla\psi(x) + \lambda), \;\max\big( \gamma(\nabla\psi(x) - \lambda), x \big) \big) \big) \big) \end{aligned} \]
Definition at line 116 of file box-constr-problem.hpp.
|
inlinestatic |
Proximal gradient step for rectangular box C with ℓ₁-regularization.
\[ \begin{aligned} h(x) &= \|x\|_1 + \delta_C(x) \\ \hat x &= \prox_{\gamma h}(x - \gamma\nabla\psi(x)) \\ &= -\max\big( x - \overline x, \;\min\big( x - \underline x, \;\min\big( \gamma(\nabla\psi(x) + \lambda), \;\max\big( \gamma(\nabla\psi(x) - \lambda), x \big) \big) \big) \big) \end{aligned} \]
Definition at line 123 of file box-constr-problem.hpp.
|
inline |
Definition at line 132 of file box-constr-problem.hpp.
Definition at line 142 of file box-constr-problem.hpp.
Definition at line 171 of file box-constr-problem.hpp.
Definition at line 173 of file box-constr-problem.hpp.
|
inline |
Definition at line 176 of file box-constr-problem.hpp.
|
inline |
Definition at line 213 of file box-constr-problem.hpp.
length_t n |
Number of decision variables, dimension of x.
Definition at line 22 of file box-constr-problem.hpp.
length_t m |
Number of constraints, dimension of g(x) and z.
Definition at line 24 of file box-constr-problem.hpp.
Constraints of the decision variables, \( x \in C \).
Definition at line 59 of file box-constr-problem.hpp.
Other constraints, \( g(x) \in D \).
Definition at line 61 of file box-constr-problem.hpp.
vec l1_reg {} |
\( \ell_1 \) (1-norm) regularization parameter.
Possible dimensions are: \( 0 \) (no regularization), \( 1 \) (a single scalar factor), or \( n \) (a different factor for each variable).
Definition at line 66 of file box-constr-problem.hpp.
index_t penalty_alm_split = 0 |
Components of the constraint function with indices below this number are handled using a quadratic penalty method rather than using an augmented Lagrangian method.
Specifically, the Lagrange multipliers for these components (which determine the shifts in ALM) are kept at zero.
Definition at line 72 of file box-constr-problem.hpp.