Accelerators#

group grp_Accelerators

Computing accelerated directions, such as L-BFGS.

template<Config Conf = DefaultConfig>
class AndersonAccel
#include <alpaqa/accelerators/anderson.hpp>

Anderson Acceleration.

Algorithm for accelerating fixed-point iterations for finding fixed points of a function \( g \), i.e. \( g(x^\star) = x^\star \), or equivalently, roots of the residual \( r(x) \triangleq g(x) - x \).

Public Types

using Params = AndersonAccelParams<config_t>

Public Functions

AndersonAccel() = default
inline AndersonAccel(Params params)
Parameters:

params – Parameters.

inline AndersonAccel(Params params, length_t n)
Parameters:
  • params – Parameters.

  • n – Problem dimension (size of the vectors).

inline void resize(length_t n)

Change the problem dimension.

Flushes the history.

Parameters:

n – Problem dimension (size of the vectors).

inline void initialize(crvec g_0, crvec r_0)

Call this function on the first iteration to initialize the accelerator.

inline void compute(crvec gₖ, crvec rₖ, rvec xₖ_aa)

Compute the accelerated iterate \( x^k_\text{AA} \), given the function value at the current iterate \( g^k = g(x^k) \) and the corresponding residual \( r^k = g^k - x^k \).

inline void compute(crvec gₖ, vec &&rₖ, rvec xₖ_aa)

Compute the accelerated iterate \( x^k_\text{AA} \), given the function value at the current iterate \( g^k = g(x^k) \) and the corresponding residual \( r^k = g^k - x^k \).

inline void reset()

Reset the accelerator (but keep the last function value and residual, so calling initialize is not necessary).

inline length_t n() const

Get the problem dimension.

inline length_t history() const

Get the maximum number of stored columns.

inline length_t current_history() const

Get the number of columns currently stored in the buffer.

inline const Params &get_params() const

Get the parameters.

inline std::string get_name() const
inline void scale_R(real_t scal)

Scale the factorization.

inline const LimitedMemoryQR<config_t> &get_QR() const

For testing purposes.

template<Config Conf = DefaultConfig, class Storage = LBFGSStorage<Conf>>
class LBFGS
#include <alpaqa/accelerators/lbfgs.hpp>

Limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm.

Public Types

enum class Sign

The sign of the vectors \( p \) passed to the update method.

Values:

enumerator Positive

\( p \sim \nabla \psi(x) \)

enumerator Negative

\( p \sim -\nabla \psi(x) \)

using Params = LBFGSParams<config_t>

Public Functions

LBFGS() = default
inline LBFGS(Params params)
inline LBFGS(Params params, length_t n)
bool update_sy(crvec s, crvec y, real_t pₙₑₓₜᵀpₙₑₓₜ, bool forced = false)

Update the inverse Hessian approximation using the new vectors sₖ = xₙₑₓₜ - xₖ and yₖ = pₙₑₓₜ - pₖ.

bool update_sy_impl(const auto &s, const auto &y, real_t pₙₑₓₜᵀpₙₑₓₜ, bool forced = false)

See also

update_sy

bool update(crvec xₖ, crvec xₙₑₓₜ, crvec pₖ, crvec pₙₑₓₜ, Sign sign = Sign::Positive, bool forced = false)

Update the inverse Hessian approximation using the new vectors xₙₑₓₜ and pₙₑₓₜ.

bool apply(rvec q, real_t γ = -1) const

Apply the inverse Hessian approximation to the given vector q.

Initial inverse Hessian approximation is set to \( H_0 = \gamma I \). If γ is negative, \( H_0 = \frac{s^\top y}{y^\top y} I \).

bool apply_masked(rvec q, real_t γ, crindexvec J) const

Apply the inverse Hessian approximation to the given vector q, applying only the columns and rows of the Hessian in the index set J.

bool apply_masked(rvec q, real_t γ, const std::vector<index_t> &J) const

Apply the inverse Hessian approximation to the given vector q, applying only the columns and rows of the Hessian in the index set J.

bool apply_masked_impl(rvec q, real_t γ, const auto &J) const

Apply the inverse Hessian approximation to the given vector q, applying only the columns and rows of the Hessian in the index set J.

void reset()

Throw away the approximation and all previous vectors s and y.

void resize(length_t n)

Re-allocate storage for a problem with a different size.

Causes a reset.

void scale_y(real_t factor)

Scale the stored y vectors by the given factor.

inline std::string get_name() const

Get a string identifier for this accelerator.

inline const Params &get_params() const

Get the parameters.

inline length_t n() const

Get the size of the s and y vectors in the buffer.

inline length_t history() const

Get the number of previous vectors s and y stored in the buffer.

inline index_t succ(index_t i) const

Get the next index in the circular buffer of previous s and y vectors.

inline index_t pred(index_t i) const

Get the previous index in the circular buffer of s and y vectors.

inline length_t current_history() const

Get the number of previous s and y vectors currently stored in the buffer.

inline auto s(index_t i)
inline auto s(index_t i) const
inline auto y(index_t i)
inline auto y(index_t i) const
inline real_t &ρ(index_t i)
inline real_t &ρ(index_t i) const
inline real_t &α(index_t i)
inline real_t &α(index_t i) const
template<class F>
inline void foreach_fwd(const F &fun) const

Iterate over the indices in the history buffer, oldest first.

template<class F>
inline void foreach_rev(const F &fun) const

Iterate over the indices in the history buffer, newest first.

Public Static Functions

static bool update_valid(const Params &params, real_t yᵀs, real_t sᵀs, real_t pᵀp)

Check if the new vectors s and y allow for a valid BFGS update that preserves the positive definiteness of the Hessian approximation.