Processing math: 100%
SuperSCS  1.3.2
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
Data Fields
scs_cone Struct Reference

Cone structure. More...

#include <cones.h>

Data Fields

scs_int f
 Number of linear equality constraints (n_{\mathrm{f}}). More...
 
scs_int l
 Dimension of LP cone (n_{\mathrm{l}}). More...
 
scs_int *RESTRICT q
 Array of SOC constraints (n_{\mathrm{q},1},\ldots, n_{\mathrm{q},N_{\mathrm{q}}}). More...
 
scs_int qsize
 Length of SOC array, i.e., number of second-order cones (N_{\mathrm{q}}). More...
 
scs_int *RESTRICT s
 array of PSD constraints (k_1,\ldots, k_{N_{\mathrm{s}}}) More...
 
scs_int ssize
 length of PSD array (N_{\mathrm{s}}) More...
 
scs_int ep
 Number of primal exponential cone triples (n_{\mathrm{ep}}). More...
 
scs_int ed
 number of dual exponential cone triples (n_{\mathrm{de}}) More...
 
scs_floatp
 Array of power cone params (\alpha_1,\ldots,\alpha_{N_{\mathrm{p}}}). More...
 
scs_int psize
 Number of (primal and dual) power cone tuples (N_{\mathrm{p}}). More...
 

Detailed Description

Cone structure.

This structure represents a Cartesian product of cones as explained in detail in this documentation page.

See Also
Cones documentation

Field Documentation

scs_int ed

number of dual exponential cone triples (n_{\mathrm{de}})

See Also
primal exponential cone
scs_int ep

Number of primal exponential cone triples (n_{\mathrm{ep}}).

See Also
dual exponential cone

Number of linear equality constraints (n_{\mathrm{f}}).

The corresponding cone is the zero-cone \mathcal{K}^{f}_{n_f} = \{0_{n_f}\}

Dimension of LP cone (n_{\mathrm{l}}).

This is used to specify element-wise inequalities.

The corresponding cone is the positive orthant \mathcal{K}^{l}_{n_l} = \{x\in\mathbb{R}^{n_l}: x_i \geq 0, \forall i\}

Array of power cone params (\alpha_1,\ldots,\alpha_{N_{\mathrm{p}}}).

Note
Cone parameters must be in [-1, 1].
Negative values are interpreted as specifying the dual cone
scs_int psize

Number of (primal and dual) power cone tuples (N_{\mathrm{p}}).

Array of SOC constraints (n_{\mathrm{q},1},\ldots, n_{\mathrm{q},N_{\mathrm{q}}}).

This is the Cartesian product of N_{so} cones with dimensions n_{so_1},\ldots, n_{so,N_{so}}.

This array contains the dimensions (n_{so_1},\ldots, n_{so,N_{so}}).

The length of this array is specified in qsize.

See Also
number of second-order cones
scs_int qsize

Length of SOC array, i.e., number of second-order cones (N_{\mathrm{q}}).

See Also
array of second-order cones

array of PSD constraints (k_1,\ldots, k_{N_{\mathrm{s}}})

Array of dimensions of PSD constraints.

See Also
number of PSD cones
scs_int ssize

length of PSD array (N_{\mathrm{s}})

See Also
array of positive semidefinite cones

The documentation for this struct was generated from the following file: