Go to the source code of this file.
|
float | Ts = 0.05 |
|
int | N_hor = 18 |
|
int | N_sim = 80 |
|
bool | multipleshooting = False |
|
int | R_obstacle = 2 |
|
| f |
|
| nlp |
|
| bounds |
|
| n_states |
|
| n_inputs |
|
| first_input_idx |
|
string | name = "mpcproblem" |
|
| f_prob = cs.Function("f", [nlp["x"], nlp["p"]], [nlp["f"]]) |
|
| g_prob = cs.Function("g", [nlp["x"], nlp["p"]], [nlp["g"]]) |
|
| prob = pa.generate_and_compile_casadi_problem(f_prob, g_prob, name=name) |
|
| lowerbound |
|
| upperbound |
|
int | lbfgsmem = N_hor |
|
int | tol = 1e-5 |
|
bool | verbose = False |
|
dictionary | panocparams |
|
| innersolver |
|
| almparams |
|
| solver = pa.ALMSolver(almparams, innersolver) |
|
| state = np.array([-5, 0, 0, 0]) |
|
| dest = np.array([5, 0.1, 0, 0]) |
|
| x_sol = np.concatenate((np.tile(state, N_hor), np.zeros((n_inputs * N_hor,)))) |
|
| y_sol = np.zeros((prob.m,)) |
|
| xs = np.zeros((N_sim, n_states)) |
|
| times = np.zeros((N_sim,)) |
|
| t |
|
| stats |
|
| input = x_sol[first_input_idx : first_input_idx + n_inputs] |
|
| fig_trajectory |
|
| ax |
|
| c = plt.Circle((0, 0), R_obstacle) |
|
| fig_time |
|