alpaqa pantr
Nonconvex constrained optimization
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Types | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
TypeErasedProblem< Conf, Allocator > Class Template Reference

#include <alpaqa/include/alpaqa/problem/type-erased-problem.hpp>

Detailed Description

template<Config Conf = DefaultConfig, class Allocator = std::allocator<std::byte>>
class alpaqa::TypeErasedProblem< Conf, Allocator >

Definition at line 208 of file type-erased-problem.hpp.

+ Inheritance diagram for TypeErasedProblem< Conf, Allocator >:
+ Collaboration diagram for TypeErasedProblem< Conf, Allocator >:

Problem dimensions

length_t get_n () const
 [Required] Number of decision variables.
 
length_t get_m () const
 [Required] Number of constraints.
 

Required cost and constraint functions

real_t eval_f (crvec x) const
 [Required] Function that evaluates the cost, \( f(x) \)
 
void eval_grad_f (crvec x, rvec grad_fx) const
 [Required] Function that evaluates the gradient of the cost, \( \nabla f(x) \)
 
void eval_g (crvec x, rvec gx) const
 [Required] Function that evaluates the constraints, \( g(x) \)
 
void eval_grad_g_prod (crvec x, crvec y, rvec grad_gxy) const
 [Required] Function that evaluates the gradient of the constraints times a vector, \( \nabla g(x)\,y = \tp{\jac_g(x)}y \)
 

Projections onto constraint sets and proximal mappings

void eval_proj_diff_g (crvec z, rvec e) const
 [Required] Function that evaluates the difference between the given point \( z \) and its projection onto the constraint set \( D \).
 
void eval_proj_multipliers (rvec y, real_t M) const
 [Required] Function that projects the Lagrange multipliers for ALM.
 
real_t eval_prox_grad_step (real_t γ, crvec x, crvec grad_ψ, rvec x̂, rvec p) const
 [Required] Function that computes a proximal gradient step.
 
index_t eval_inactive_indices_res_lna (real_t γ, crvec x, crvec grad_ψ, rindexvec J) const
 [Optional] Function that computes the inactive indices \( \mathcal J(x) \) for the evaluation of the linear Newton approximation of the residual, as in [2].
 

Constraint sets

const Boxget_box_C () const
 [Optional] Get the rectangular constraint set of the decision variables, \( x \in C \).
 
const Boxget_box_D () const
 [Optional] Get the rectangular constraint set of the general constraint function, \( g(x) \in D \).
 

Functions for second-order solvers

void eval_jac_g (crvec x, rindexvec inner_idx, rindexvec outer_ptr, rvec J_values) const
 [Optional] Function that evaluates the Jacobian of the constraints as a sparse matrix, \( \jac_g(x) \)
 
length_t get_jac_g_num_nonzeros () const
 [Optional] Function that gets the number of nonzeros of the Jacobian of the constraints.
 
void eval_grad_gi (crvec x, index_t i, rvec grad_gi) const
 [Optional] Function that evaluates the gradient of one specific constraint, \( \nabla g_i(x) \)
 
void eval_hess_L_prod (crvec x, crvec y, real_t scale, crvec v, rvec Hv) const
 [Optional] Function that evaluates the Hessian of the Lagrangian multiplied by a vector, \( \nabla_{xx}^2L(x, y)\,v \)
 
void eval_hess_L (crvec x, crvec y, real_t scale, rindexvec inner_idx, rindexvec outer_ptr, rvec H_values) const
 [Optional] Function that evaluates the Hessian of the Lagrangian as a sparse matrix, \( \nabla_{xx}^2L(x, y) \)
 
length_t get_hess_L_num_nonzeros () const
 [Optional] Function that gets the number of nonzeros of the Hessian of the Lagrangian.
 
void eval_hess_ψ_prod (crvec x, crvec y, crvec Σ, real_t scale, crvec v, rvec Hv) const
 [Optional] Function that evaluates the Hessian of the augmented Lagrangian multiplied by a vector, \( \nabla_{xx}^2L_\Sigma(x, y)\,v \)
 
void eval_hess_ψ (crvec x, crvec y, crvec Σ, real_t scale, rindexvec inner_idx, rindexvec outer_ptr, rvec H_values) const
 [Optional] Function that evaluates the Hessian of the augmented Lagrangian, \( \nabla_{xx}^2L_\Sigma(x, y) \)
 
length_t get_hess_ψ_num_nonzeros () const
 [Optional] Function that gets the number of nonzeros of the Hessian of the augmented Lagrangian.
 

Combined evaluations

real_t eval_f_grad_f (crvec x, rvec grad_fx) const
 [Optional] Evaluate both \( f(x) \) and its gradient, \( \nabla f(x) \).
 
real_t eval_f_g (crvec x, rvec g) const
 [Optional] Evaluate both \( f(x) \) and \( g(x) \).
 
void eval_grad_f_grad_g_prod (crvec x, crvec y, rvec grad_f, rvec grad_gxy) const
 [Optional] Evaluate both \( \nabla f(x) \) and \( \nabla g(x)\,y \).
 
void eval_grad_L (crvec x, crvec y, rvec grad_L, rvec work_n) const
 [Optional] Evaluate the gradient of the Lagrangian \( \nabla_x L(x, y) = \nabla f(x) + \nabla g(x)\,y \)
 

Augmented Lagrangian

real_t eval_ψ (crvec x, crvec y, crvec Σ, rvec ŷ) const
 [Optional] Calculate both ψ(x) and the vector ŷ that can later be used to compute ∇ψ.
 
void eval_grad_ψ (crvec x, crvec y, crvec Σ, rvec grad_ψ, rvec work_n, rvec work_m) const
 [Optional] Calculate the gradient ∇ψ(x).
 
real_t eval_ψ_grad_ψ (crvec x, crvec y, crvec Σ, rvec grad_ψ, rvec work_n, rvec work_m) const
 [Optional] Calculate both ψ(x) and its gradient ∇ψ(x).
 

Checks

void check () const
 [Optional] Check that the problem formulation is well-defined, the dimensions match, etc.
 

Querying specialized implementations

bool provides_eval_inactive_indices_res_lna () const
 Returns true if the problem provides an implementation of eval_inactive_indices_res_lna.
 
bool provides_eval_jac_g () const
 Returns true if the problem provides an implementation of eval_jac_g.
 
bool provides_get_jac_g_num_nonzeros () const
 Returns true if the problem provides an implementation of get_jac_g_num_nonzeros.
 
bool provides_eval_grad_gi () const
 Returns true if the problem provides an implementation of eval_grad_gi.
 
bool provides_eval_hess_L_prod () const
 Returns true if the problem provides an implementation of eval_hess_L_prod.
 
bool provides_eval_hess_L () const
 Returns true if the problem provides an implementation of eval_hess_L.
 
bool provides_get_hess_L_num_nonzeros () const
 Returns true if the problem provides an implementation of get_hess_L_num_nonzeros.
 
bool provides_eval_hess_ψ_prod () const
 Returns true if the problem provides an implementation of eval_hess_ψ_prod.
 
bool provides_eval_hess_ψ () const
 Returns true if the problem provides an implementation of eval_hess_ψ.
 
bool provides_get_hess_ψ_num_nonzeros () const
 Returns true if the problem provides an implementation of get_hess_ψ_num_nonzeros.
 
bool provides_eval_f_grad_f () const
 Returns true if the problem provides a specialized implementation of eval_f_grad_f, false if it uses the default implementation.
 
bool provides_eval_f_g () const
 Returns true if the problem provides a specialized implementation of eval_f_g, false if it uses the default implementation.
 
bool provides_eval_grad_f_grad_g_prod () const
 Returns true if the problem provides a specialized implementation of eval_grad_f_grad_g_prod, false if it uses the default implementation.
 
bool provides_eval_grad_L () const
 Returns true if the problem provides a specialized implementation of eval_grad_L, false if it uses the default implementation.
 
bool provides_eval_ψ () const
 Returns true if the problem provides a specialized implementation of eval_ψ, false if it uses the default implementation.
 
bool provides_eval_grad_ψ () const
 Returns true if the problem provides a specialized implementation of eval_grad_ψ, false if it uses the default implementation.
 
bool provides_eval_ψ_grad_ψ () const
 Returns true if the problem provides a specialized implementation of eval_ψ_grad_ψ, false if it uses the default implementation.
 
bool provides_get_box_C () const
 Returns true if the problem provides an implementation of get_box_C.
 
bool provides_get_box_D () const
 Returns true if the problem provides an implementation of get_box_D.
 
bool provides_check () const
 Returns true if the problem provides an implementation of check.
 

Helpers

real_t calc_ŷ_dᵀŷ (rvec g_ŷ, crvec y, crvec Σ) const
 Given g(x), compute the intermediate results ŷ and dᵀŷ that can later be used to compute ψ(x) and ∇ψ(x).
 

Public Types

using Box = alpaqa::Box< config_t >
 
using VTable = ProblemVTable< config_t >
 
using allocator_type = Allocator
 
using TypeErased = util::TypeErased< VTable, allocator_type >
 

Public Member Functions

 TypeErased () noexcept(noexcept(allocator_type()))=default
 Default constructor.
 
template<class Alloc >
 TypeErased (std::allocator_arg_t, const Alloc &alloc)
 Default constructor (allocator aware).
 
 TypeErased (const TypeErased &other)
 Copy constructor.
 
 TypeErased (const TypeErased &other, allocator_type alloc)
 Copy constructor (allocator aware).
 
 TypeErased (TypeErased &&other) noexcept
 Move constructor.
 
 TypeErased (TypeErased &&other, const allocator_type &alloc) noexcept
 Move constructor (allocator aware).
 
template<class T , class Alloc >
 TypeErased (std::allocator_arg_t, const Alloc &alloc, T &&d)
 Main constructor that type-erases the given argument.
 
template<class T , class Alloc , class... Args>
 TypeErased (std::allocator_arg_t, const Alloc &alloc, te_in_place_t< T >, Args &&...args)
 Main constructor that type-erases the object constructed from the given argument.
 
template<class T >
requires no_child_of_ours<T>
 TypeErased (T &&d)
 
template<class T , class... Args>
 TypeErased (te_in_place_t< T >, Args &&...args)
 Main constructor that type-erases the object constructed from the given argument.
 
 operator bool () const noexcept
 Check if this wrapper wraps an object.
 
allocator_type get_allocator () const noexcept
 Get a copy of the allocator.
 
const std::type_info & type () const noexcept
 Query the contained type.
 
template<class T >
T & as () &
 Convert the type-erased object to the given type.
 
template<class T >
const T & as () const &
 Convert the type-erased object to the given type.
 
template<class T >
const T && as () &&
 Convert the type-erased object to the given type.
 

Static Public Member Functions

template<class T , class... Args>
static TypeErasedProblem make (Args &&...args)
 
template<class Ret , class T , class Alloc , class... Args>
requires std::is_base_of_v<TypeErased, Ret>
static Ret make (std::allocator_arg_t tag, const Alloc &alloc, Args &&...args)
 Construct a type-erased wrapper of type Ret for an object of type T, initialized in-place with the given arguments.
 

Static Public Attributes

static constexpr size_t small_buffer_size = SmallBufferSize
 

Protected Member Functions

template<class Ret , class... FArgs, class... Args>
decltype(auto) call (Ret(*f)(const void *, FArgs...), Args &&...args) const
 Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.
 
template<class Ret , class... FArgs, class... Args>
decltype(auto) call (Ret(*f)(void *, FArgs...), Args &&...args)
 Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.
 
template<class Ret >
decltype(auto) call (Ret(*f)(const void *)) const
 Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.
 
template<class Ret >
decltype(auto) call (Ret(*f)(void *))
 Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.
 
template<class Ret >
decltype(auto) call (Ret(*f)(const void *, const VTable &)) const
 Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.
 
template<class Ret >
decltype(auto) call (Ret(*f)(void *, const VTable &))
 Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.
 
template<class T , class... Args>
void construct_inplace (Args &&...args)
 Ensure storage and construct the type-erased object of type T in-place.
 
template<class Ret >
decltype(auto) call (Ret(*f)(const void *, const VTable &)) const
 Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.
 
template<class Ret >
decltype(auto) call (Ret(*f)(void *, const VTable &))
 Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.
 

Protected Attributes

void * self
 Pointer to the stored object.
 
VTable vtable
 
size_t size = invalid_size
 Size required to store the object.
 

Static Protected Attributes

static constexpr size_t invalid_size
 

Private Types

using allocator_traits = std::allocator_traits< allocator_type >
 
using buffer_type = std::array< std::byte, small_buffer_size >
 

Private Member Functions

Deallocator allocate (size_t size)
 Ensure that storage is available, either by using the small buffer if it is large enough, or by calling the allocator.
 
void deallocate ()
 Deallocate the memory without invoking the destructor.
 
void cleanup ()
 Destroy the type-erased object (if not empty), and deallocate the memory if necessary.
 
template<bool CopyAllocator>
void do_copy_assign (const TypeErased &other)
 

Private Attributes

buffer_type small_buffer
 
allocator_type allocator
 

Static Private Attributes

template<class T >
static constexpr auto no_child_of_ours
 True if T is not a child class of TypeErased.
 

Member Typedef Documentation

◆ Box

using Box = alpaqa::Box<config_t>

Definition at line 211 of file type-erased-problem.hpp.

◆ VTable

using VTable = ProblemVTable<config_t>

Definition at line 212 of file type-erased-problem.hpp.

◆ allocator_type

using allocator_type = Allocator

Definition at line 213 of file type-erased-problem.hpp.

◆ TypeErased

Definition at line 214 of file type-erased-problem.hpp.

◆ allocator_traits

using allocator_traits = std::allocator_traits<allocator_type>
privateinherited

Definition at line 203 of file type-erasure.hpp.

◆ buffer_type

using buffer_type = std::array<std::byte, small_buffer_size>
privateinherited

Definition at line 204 of file type-erasure.hpp.

Member Function Documentation

◆ make() [1/2]

static TypeErasedProblem make ( Args &&...  args)
inlinestatic

Definition at line 224 of file type-erased-problem.hpp.

◆ get_n()

auto get_n

[Required] Number of decision variables.

Definition at line 697 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ get_m()

auto get_m

[Required] Number of constraints.

Definition at line 701 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_f()

auto eval_f ( crvec  x) const

[Required] Function that evaluates the cost, \( f(x) \)

Parameters
[in]xDecision variable \( x \in \R^n \)

Definition at line 726 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_grad_f()

void eval_grad_f ( crvec  x,
rvec  grad_fx 
) const

[Required] Function that evaluates the gradient of the cost, \( \nabla f(x) \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[out]grad_fxGradient of cost function \( \nabla f(x) \in \R^n \)

Definition at line 730 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_g()

void eval_g ( crvec  x,
rvec  gx 
) const

[Required] Function that evaluates the constraints, \( g(x) \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[out]gxValue of the constraints \( g(x) \in \R^m \)

Definition at line 734 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_grad_g_prod()

void eval_grad_g_prod ( crvec  x,
crvec  y,
rvec  grad_gxy 
) const

[Required] Function that evaluates the gradient of the constraints times a vector, \( \nabla g(x)\,y = \tp{\jac_g(x)}y \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[in]yVector \( y \in \R^m \) to multiply the gradient by
[out]grad_gxyGradient of the constraints \( \nabla g(x)\,y \in \R^n \)

Definition at line 738 of file type-erased-problem.hpp.

◆ eval_proj_diff_g()

void eval_proj_diff_g ( crvec  z,
rvec  e 
) const

[Required] Function that evaluates the difference between the given point \( z \) and its projection onto the constraint set \( D \).

Parameters
[in]zSlack variable, \( z \in \R^m \)
[out]eThe difference relative to its projection, \( e = z - \Pi_D(z) \in \R^m \)
Note
z and e can refer to the same vector.

Definition at line 706 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_proj_multipliers()

void eval_proj_multipliers ( rvec  y,
real_t  M 
) const

[Required] Function that projects the Lagrange multipliers for ALM.

Parameters
[in,out]yMultipliers, \( y \leftarrow \Pi_Y(y) \in \R^m \)
[in]MThe radius/size of the set \( Y \). See ALMParams::max_multiplier.

Definition at line 710 of file type-erased-problem.hpp.

◆ eval_prox_grad_step()

auto eval_prox_grad_step ( real_t  γ,
crvec  x,
crvec  grad_ψ,
rvec  ,
rvec  p 
) const

[Required] Function that computes a proximal gradient step.

Parameters
[in]γStep size, \( \gamma \in \R_{>0} \)
[in]xDecision variable \( x \in \R^n \)
[in]grad_ψGradient of the subproblem cost, \( \nabla\psi(x) \in \R^n \)
[out]Next proximal gradient iterate, \( \hat x = T_\gamma(x) = \prox_{\gamma h}(x - \gamma\nabla\psi(x)) \in \R^n \)
[out]pThe proximal gradient step, \( p = \hat x - x \in \R^n \)
Returns
The nonsmooth function evaluated at x̂, \( h(\hat x) \).
Note
The vector \( p \) is often used in stopping criteria, so its numerical accuracy is more important than that of \( \hat x \).

Definition at line 714 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_inactive_indices_res_lna()

auto eval_inactive_indices_res_lna ( real_t  γ,
crvec  x,
crvec  grad_ψ,
rindexvec  J 
) const

[Optional] Function that computes the inactive indices \( \mathcal J(x) \) for the evaluation of the linear Newton approximation of the residual, as in [2].

Parameters
[in]γStep size, \( \gamma \in \R_{>0} \)
[in]xDecision variable \( x \in \R^n \)
[in]grad_ψGradient of the subproblem cost, \( \nabla\psi(x) \in \R^n \)
[out]JThe indices of the components of \( x \) that are in the index set \( \mathcal J(x) \). In ascending order, at most n.
Returns
The number of inactive constraints, \( \# \mathcal J(x) \).

For example, in the case of box constraints, we have

\[ \mathcal J(x) \defeq \defset{i \in \N_{[0, n-1]}}{\underline x_i \lt x_i - \gamma\nabla_{\!x_i}\psi(x) \lt \overline x_i}. \]

Definition at line 719 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ get_box_C()

auto get_box_C

[Optional] Get the rectangular constraint set of the decision variables, \( x \in C \).

Definition at line 821 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ get_box_D()

auto get_box_D

[Optional] Get the rectangular constraint set of the general constraint function, \( g(x) \in D \).

Definition at line 825 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_jac_g()

void eval_jac_g ( crvec  x,
rindexvec  inner_idx,
rindexvec  outer_ptr,
rvec  J_values 
) const

[Optional] Function that evaluates the Jacobian of the constraints as a sparse matrix, \( \jac_g(x) \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[in,out]inner_idxInner indices (row indices of nonzeros).
[in,out]outer_ptrOuter pointers (points to the first nonzero in each column).
[out]J_valuesNonzero values of the Jacobian \( \jac_g(x) \in \R^{m\times n} \) If J_values has size zero, this function should initialize inner_idx and outer_ptr. If J_values is nonempty, inner_idx and outer_ptr can be assumed to be initialized, and this function should evaluate J_values.

Required for second-order solvers only.

Definition at line 746 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ get_jac_g_num_nonzeros()

auto get_jac_g_num_nonzeros

[Optional] Function that gets the number of nonzeros of the Jacobian of the constraints.

Required for second-order solvers only.

Definition at line 751 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_grad_gi()

void eval_grad_gi ( crvec  x,
index_t  i,
rvec  grad_gi 
) const

[Optional] Function that evaluates the gradient of one specific constraint, \( \nabla g_i(x) \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[in]iWhich constraint \( 0 \le i \lt m \)
[out]grad_giGradient of the constraint \( \nabla g_i(x) \in \R^n \)

Required for second-order solvers only.

Definition at line 742 of file type-erased-problem.hpp.

◆ eval_hess_L_prod()

void eval_hess_L_prod ( crvec  x,
crvec  y,
real_t  scale,
crvec  v,
rvec  Hv 
) const

[Optional] Function that evaluates the Hessian of the Lagrangian multiplied by a vector, \( \nabla_{xx}^2L(x, y)\,v \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[in]yLagrange multipliers \( y \in \R^m \)
[in]scaleScale factor for the cost function.
[in]vVector to multiply by \( v \in \R^n \)
[out]HvHessian-vector product \( \nabla_{xx}^2 L(x, y)\,v \in \R^{n} \)

Required for second-order solvers only.

Definition at line 755 of file type-erased-problem.hpp.

◆ eval_hess_L()

void eval_hess_L ( crvec  x,
crvec  y,
real_t  scale,
rindexvec  inner_idx,
rindexvec  outer_ptr,
rvec  H_values 
) const

[Optional] Function that evaluates the Hessian of the Lagrangian as a sparse matrix, \( \nabla_{xx}^2L(x, y) \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[in]yLagrange multipliers \( y \in \R^m \)
[in]scaleScale factor for the cost function.
[in,out]inner_idxInner indices (row indices of nonzeros).
[in,out]outer_ptrOuter pointers (points to the first nonzero in each column).
[out]H_valuesNonzero values of the Hessian \( \nabla_{xx}^2 L(x, y) \in \R^{n\times n} \). If H_values has size zero, this function should initialize inner_idx and outer_ptr. If H_values is nonempty, inner_idx and outer_ptr can be assumed to be initialized, and this function should evaluate H_values.

Required for second-order solvers only.

Definition at line 760 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ get_hess_L_num_nonzeros()

auto get_hess_L_num_nonzeros

[Optional] Function that gets the number of nonzeros of the Hessian of the Lagrangian.

Required for second-order solvers only.

Definition at line 766 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_hess_ψ_prod()

void eval_hess_ψ_prod ( crvec  x,
crvec  y,
crvec  Σ,
real_t  scale,
crvec  v,
rvec  Hv 
) const

[Optional] Function that evaluates the Hessian of the augmented Lagrangian multiplied by a vector, \( \nabla_{xx}^2L_\Sigma(x, y)\,v \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[in]yLagrange multipliers \( y \in \R^m \)
[in]ΣPenalty weights \( \Sigma \)
[in]scaleScale factor for the cost function.
[in]vVector to multiply by \( v \in \R^n \)
[out]HvHessian-vector product \( \nabla_{xx}^2 L_\Sigma(x, y)\,v \in \R^{n} \)

Required for second-order solvers only.

Definition at line 770 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_hess_ψ()

void eval_hess_ψ ( crvec  x,
crvec  y,
crvec  Σ,
real_t  scale,
rindexvec  inner_idx,
rindexvec  outer_ptr,
rvec  H_values 
) const

[Optional] Function that evaluates the Hessian of the augmented Lagrangian, \( \nabla_{xx}^2L_\Sigma(x, y) \)

Parameters
[in]xDecision variable \( x \in \R^n \)
[in]yLagrange multipliers \( y \in \R^m \)
[in]ΣPenalty weights \( \Sigma \)
[in]scaleScale factor for the cost function.
[in,out]inner_idxInner indices (row indices of nonzeros).
[in,out]outer_ptrOuter pointers (points to the first nonzero in each column).
[out]H_valuesNonzero values of the Hessian \( \nabla_{xx}^2 L_\Sigma(x, y) \in \R^{n\times n} \) If H_values has size zero, this function should initialize inner_idx and outer_ptr. If H_values is nonempty, inner_idx and outer_ptr can be assumed to be initialized, and this function should evaluate H_values.

Required for second-order solvers only.

Definition at line 775 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ get_hess_ψ_num_nonzeros()

auto get_hess_ψ_num_nonzeros

[Optional] Function that gets the number of nonzeros of the Hessian of the augmented Lagrangian.

Required for second-order solvers only.

Definition at line 781 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_f_grad_f()

auto eval_f_grad_f ( crvec  x,
rvec  grad_fx 
) const

[Optional] Evaluate both \( f(x) \) and its gradient, \( \nabla f(x) \).

Default implementation:
ProblemVTable::default_eval_f_grad_f

Definition at line 785 of file type-erased-problem.hpp.

◆ eval_f_g()

auto eval_f_g ( crvec  x,
rvec  g 
) const

[Optional] Evaluate both \( f(x) \) and \( g(x) \).

Default implementation:
ProblemVTable::default_eval_f_g

Definition at line 789 of file type-erased-problem.hpp.

◆ eval_grad_f_grad_g_prod()

void eval_grad_f_grad_g_prod ( crvec  x,
crvec  y,
rvec  grad_f,
rvec  grad_gxy 
) const

[Optional] Evaluate both \( \nabla f(x) \) and \( \nabla g(x)\,y \).

Default implementation:
ProblemVTable::default_eval_grad_f_grad_g_prod

Definition at line 793 of file type-erased-problem.hpp.

◆ eval_grad_L()

void eval_grad_L ( crvec  x,
crvec  y,
rvec  grad_L,
rvec  work_n 
) const

[Optional] Evaluate the gradient of the Lagrangian \( \nabla_x L(x, y) = \nabla f(x) + \nabla g(x)\,y \)

Default implementation:
ProblemVTable::default_eval_grad_L

Definition at line 798 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_ψ()

auto eval_ψ ( crvec  x,
crvec  y,
crvec  Σ,
rvec  ŷ 
) const

[Optional] Calculate both ψ(x) and the vector ŷ that can later be used to compute ∇ψ.

\[ \psi(x) = f(x) + \tfrac{1}{2} \text{dist}_\Sigma^2\left(g(x) + \Sigma^{-1}y,\;D\right) \]

\[ \hat y = \Sigma\, \left(g(x) + \Sigma^{-1}y - \Pi_D\left(g(x) + \Sigma^{-1}y\right)\right) \]

Default implementation:
ProblemVTable::default_eval_ψ
Parameters
[in]xDecision variable \( x \)
[in]yLagrange multipliers \( y \)
[in]ΣPenalty weights \( \Sigma \)
[out]ŷ\( \hat y \)

Definition at line 803 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_grad_ψ()

void eval_grad_ψ ( crvec  x,
crvec  y,
crvec  Σ,
rvec  grad_ψ,
rvec  work_n,
rvec  work_m 
) const

[Optional] Calculate the gradient ∇ψ(x).

\[ \nabla \psi(x) = \nabla f(x) + \nabla g(x)\,\hat y(x) \]

Default implementation:
ProblemVTable::default_eval_grad_ψ
Parameters
[in]xDecision variable \( x \)
[in]yLagrange multipliers \( y \)
[in]ΣPenalty weights \( \Sigma \)
[out]grad_ψ\( \nabla \psi(x) \)
work_nDimension \( n \)
work_mDimension \( m \)

Definition at line 807 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ eval_ψ_grad_ψ()

auto eval_ψ_grad_ψ ( crvec  x,
crvec  y,
crvec  Σ,
rvec  grad_ψ,
rvec  work_n,
rvec  work_m 
) const

[Optional] Calculate both ψ(x) and its gradient ∇ψ(x).

\[ \psi(x) = f(x) + \tfrac{1}{2} \text{dist}_\Sigma^2\left(g(x) + \Sigma^{-1}y,\;D\right) \]

\[ \nabla \psi(x) = \nabla f(x) + \nabla g(x)\,\hat y(x) \]

Default implementation:
ProblemVTable::default_eval_ψ_grad_ψ
Parameters
[in]xDecision variable \( x \)
[in]yLagrange multipliers \( y \)
[in]ΣPenalty weights \( \Sigma \)
[out]grad_ψ\( \nabla \psi(x) \)
work_nDimension \( n \)
work_mDimension \( m \)

Definition at line 812 of file type-erased-problem.hpp.

+ Here is the caller graph for this function:

◆ check()

void check

[Optional] Check that the problem formulation is well-defined, the dimensions match, etc.

Throws an exception if this is not the case.

Definition at line 829 of file type-erased-problem.hpp.

◆ provides_eval_inactive_indices_res_lna()

bool provides_eval_inactive_indices_res_lna ( ) const
inline

Returns true if the problem provides an implementation of eval_inactive_indices_res_lna.

Definition at line 577 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_jac_g()

bool provides_eval_jac_g ( ) const
inline

Returns true if the problem provides an implementation of eval_jac_g.

Definition at line 582 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_get_jac_g_num_nonzeros()

bool provides_get_jac_g_num_nonzeros ( ) const
inline

Returns true if the problem provides an implementation of get_jac_g_num_nonzeros.

Definition at line 585 of file type-erased-problem.hpp.

+ Here is the call graph for this function:

◆ provides_eval_grad_gi()

bool provides_eval_grad_gi ( ) const
inline

Returns true if the problem provides an implementation of eval_grad_gi.

Definition at line 590 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_hess_L_prod()

bool provides_eval_hess_L_prod ( ) const
inline

Returns true if the problem provides an implementation of eval_hess_L_prod.

Definition at line 595 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_hess_L()

bool provides_eval_hess_L ( ) const
inline

Returns true if the problem provides an implementation of eval_hess_L.

Definition at line 600 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_get_hess_L_num_nonzeros()

bool provides_get_hess_L_num_nonzeros ( ) const
inline

Returns true if the problem provides an implementation of get_hess_L_num_nonzeros.

Definition at line 603 of file type-erased-problem.hpp.

+ Here is the call graph for this function:

◆ provides_eval_hess_ψ_prod()

bool provides_eval_hess_ψ_prod ( ) const
inline

Returns true if the problem provides an implementation of eval_hess_ψ_prod.

Definition at line 608 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_hess_ψ()

bool provides_eval_hess_ψ ( ) const
inline

Returns true if the problem provides an implementation of eval_hess_ψ.

Definition at line 613 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_get_hess_ψ_num_nonzeros()

bool provides_get_hess_ψ_num_nonzeros ( ) const
inline

Returns true if the problem provides an implementation of get_hess_ψ_num_nonzeros.

Definition at line 616 of file type-erased-problem.hpp.

+ Here is the call graph for this function:

◆ provides_eval_f_grad_f()

bool provides_eval_f_grad_f ( ) const
inline

Returns true if the problem provides a specialized implementation of eval_f_grad_f, false if it uses the default implementation.

Definition at line 621 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_f_g()

bool provides_eval_f_g ( ) const
inline

Returns true if the problem provides a specialized implementation of eval_f_g, false if it uses the default implementation.

Definition at line 626 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_grad_f_grad_g_prod()

bool provides_eval_grad_f_grad_g_prod ( ) const
inline

Returns true if the problem provides a specialized implementation of eval_grad_f_grad_g_prod, false if it uses the default implementation.

Definition at line 629 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_grad_L()

bool provides_eval_grad_L ( ) const
inline

Returns true if the problem provides a specialized implementation of eval_grad_L, false if it uses the default implementation.

Definition at line 634 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_ψ()

bool provides_eval_ψ ( ) const
inline

Returns true if the problem provides a specialized implementation of eval_ψ, false if it uses the default implementation.

Definition at line 637 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_grad_ψ()

bool provides_eval_grad_ψ ( ) const
inline

Returns true if the problem provides a specialized implementation of eval_grad_ψ, false if it uses the default implementation.

Definition at line 640 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_eval_ψ_grad_ψ()

bool provides_eval_ψ_grad_ψ ( ) const
inline

Returns true if the problem provides a specialized implementation of eval_ψ_grad_ψ, false if it uses the default implementation.

Definition at line 643 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_get_box_C()

bool provides_get_box_C ( ) const
inline

Returns true if the problem provides an implementation of get_box_C.

Definition at line 648 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_get_box_D()

bool provides_get_box_D ( ) const
inline

Returns true if the problem provides an implementation of get_box_D.

Definition at line 651 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ provides_check()

bool provides_check ( ) const
inline

Returns true if the problem provides an implementation of check.

Definition at line 653 of file type-erased-problem.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ calc_ŷ_dᵀŷ()

auto calc_ŷ_dᵀŷ ( rvec  g_ŷ,
crvec  y,
crvec  Σ 
) const

Given g(x), compute the intermediate results ŷ and dᵀŷ that can later be used to compute ψ(x) and ∇ψ(x).

Computes the result using the following algorithm:

\[ \begin{aligned} \zeta &= g(x) + \Sigma^{-1} y \\[] d &= \zeta - \Pi_D(\zeta) = \operatorname{eval\_proj\_diff\_g}(\zeta, \zeta) \\[] \hat y &= \Sigma d \\[] \end{aligned} \]

See also
Math
Parameters
[in,out]g_ŷInput \( g(x) \), outputs \( \hat y \)
[in]yLagrange multipliers \( y \)
[in]ΣPenalty weights \( \Sigma \)
Returns
The inner product \( d^\top \hat y \)

Definition at line 817 of file type-erased-problem.hpp.

◆ TypeErased() [1/10]

TypeErased ( )
defaultnoexcept

Default constructor.

◆ TypeErased() [2/10]

TypeErased ( std::allocator_arg_t  ,
const Alloc &  alloc 
)
inline

Default constructor (allocator aware).

Definition at line 228 of file type-erasure.hpp.

◆ TypeErased() [3/10]

TypeErased ( const TypeErased other)
inline

Copy constructor.

Definition at line 230 of file type-erasure.hpp.

◆ TypeErased() [4/10]

TypeErased ( const TypeErased other,
allocator_type  alloc 
)
inline

Copy constructor (allocator aware).

Definition at line 236 of file type-erasure.hpp.

◆ TypeErased() [5/10]

TypeErased ( TypeErased &&  other)
inlinenoexcept

Move constructor.

Definition at line 252 of file type-erasure.hpp.

◆ TypeErased() [6/10]

TypeErased ( TypeErased &&  other,
const allocator_type alloc 
)
inlinenoexcept

Move constructor (allocator aware).

Definition at line 270 of file type-erasure.hpp.

◆ TypeErased() [7/10]

TypeErased ( std::allocator_arg_t  ,
const Alloc &  alloc,
T &&  d 
)
inlineexplicit

Main constructor that type-erases the given argument.

Definition at line 355 of file type-erasure.hpp.

◆ TypeErased() [8/10]

TypeErased ( std::allocator_arg_t  ,
const Alloc &  alloc,
te_in_place_t< T >  ,
Args &&...  args 
)
inlineexplicit

Main constructor that type-erases the object constructed from the given argument.

Definition at line 362 of file type-erasure.hpp.

◆ TypeErased() [9/10]

TypeErased ( T &&  d)
inlineexplicit

Requirement prevents this constructor from taking precedence over the copy and move constructors.

Definition at line 372 of file type-erasure.hpp.

◆ TypeErased() [10/10]

TypeErased ( te_in_place_t< T >  ,
Args &&...  args 
)
inlineexplicit

Main constructor that type-erases the object constructed from the given argument.

Definition at line 378 of file type-erasure.hpp.

◆ call() [1/8]

decltype(auto) call ( Ret(*)(const void *, FArgs...)  f,
Args &&...  args 
) const
inlineprotected

Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.

Definition at line 517 of file type-erasure.hpp.

◆ call() [2/8]

decltype(auto) call ( Ret(*)(void *, FArgs...)  f,
Args &&...  args 
)
inlineprotected

Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.

Definition at line 529 of file type-erasure.hpp.

◆ call() [3/8]

decltype(auto) call ( Ret(*)(const void *)  f) const
inlineprotected

Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.

Definition at line 541 of file type-erasure.hpp.

◆ call() [4/8]

decltype(auto) call ( Ret(*)(void *)  f)
inlineprotected

Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.

Definition at line 548 of file type-erasure.hpp.

◆ call() [5/8]

decltype(auto) call ( Ret(*)(const void *, const VTable &)  f) const
inlineprotected

Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.

Definition at line 555 of file type-erasure.hpp.

◆ call() [6/8]

decltype(auto) call ( Ret(*)(void *, const VTable &)  f)
inlineprotected

Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.

Definition at line 563 of file type-erasure.hpp.

◆ make() [2/2]

static Ret make ( std::allocator_arg_t  tag,
const Alloc &  alloc,
Args &&...  args 
)
inlinestaticinherited

Construct a type-erased wrapper of type Ret for an object of type T, initialized in-place with the given arguments.

Definition at line 386 of file type-erasure.hpp.

◆ operator bool()

operator bool ( ) const
inlineexplicitnoexceptinherited

Check if this wrapper wraps an object.

False for default-constructed objects.

Definition at line 403 of file type-erasure.hpp.

◆ get_allocator()

allocator_type get_allocator ( ) const
inlinenoexceptinherited

Get a copy of the allocator.

Definition at line 406 of file type-erasure.hpp.

◆ type()

const std::type_info & type ( ) const
inlinenoexceptinherited

Query the contained type.

Definition at line 409 of file type-erasure.hpp.

+ Here is the caller graph for this function:

◆ as() [1/3]

T & as ( ) &
inlineinherited

Convert the type-erased object to the given type.

The type is checked in debug builds only, use with caution.

Definition at line 416 of file type-erasure.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ as() [2/3]

const T & as ( ) const &
inlineinherited

Convert the type-erased object to the given type.

The type is checked in debug builds only, use with caution.

Definition at line 423 of file type-erasure.hpp.

+ Here is the call graph for this function:

◆ as() [3/3]

const T && as ( ) &&
inlineinherited

Convert the type-erased object to the given type.

The type is checked in debug builds only, use with caution.

Definition at line 430 of file type-erasure.hpp.

+ Here is the call graph for this function:

◆ allocate()

Deallocator allocate ( size_t  size)
inlineprivateinherited

Ensure that storage is available, either by using the small buffer if it is large enough, or by calling the allocator.

Returns a RAII wrapper that deallocates the storage unless released.

Definition at line 453 of file type-erasure.hpp.

+ Here is the caller graph for this function:

◆ deallocate()

void deallocate ( )
inlineprivateinherited

Deallocate the memory without invoking the destructor.

Definition at line 463 of file type-erasure.hpp.

+ Here is the caller graph for this function:

◆ cleanup()

void cleanup ( )
inlineprivateinherited

Destroy the type-erased object (if not empty), and deallocate the memory if necessary.

Definition at line 473 of file type-erasure.hpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ do_copy_assign()

void do_copy_assign ( const TypeErased< VTable, Allocator, SmallBufferSize > &  other)
inlineprivateinherited

Definition at line 481 of file type-erasure.hpp.

+ Here is the call graph for this function:

◆ construct_inplace()

void construct_inplace ( Args &&...  args)
inlineprotectedinherited

Ensure storage and construct the type-erased object of type T in-place.

Definition at line 501 of file type-erasure.hpp.

+ Here is the call graph for this function:

◆ call() [7/8]

decltype(auto) call ( Ret(*)(const void *, const VTable &)  f) const
inlineprotectedinherited

Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.

Definition at line 555 of file type-erasure.hpp.

◆ call() [8/8]

decltype(auto) call ( Ret(*)(void *, const VTable &)  f)
inlineprotectedinherited

Call the vtable function f with the given arguments args, implicitly passing the self pointer and vtable reference if necessary.

Definition at line 563 of file type-erasure.hpp.

Member Data Documentation

◆ self

void* self
protected

Pointer to the stored object.

Definition at line 218 of file type-erasure.hpp.

◆ vtable

VTable vtable
protected

Definition at line 221 of file type-erasure.hpp.

◆ small_buffer_size

constexpr size_t small_buffer_size = SmallBufferSize
staticconstexprinherited

Definition at line 199 of file type-erasure.hpp.

◆ small_buffer

buffer_type small_buffer
privateinherited

Definition at line 205 of file type-erasure.hpp.

◆ allocator

allocator_type allocator
privateinherited

Definition at line 206 of file type-erasure.hpp.

◆ no_child_of_ours

constexpr auto no_child_of_ours
staticconstexprprivateinherited
Initial value:
=
!std::is_base_of_v<TypeErased, std::remove_cvref_t<T>>

True if T is not a child class of TypeErased.

Definition at line 211 of file type-erasure.hpp.

◆ invalid_size

constexpr size_t invalid_size
staticconstexprprotectedinherited
Initial value:
=
static_cast<size_t>(0xDEADBEEFDEADBEEF)

Definition at line 215 of file type-erasure.hpp.

◆ size

size_t size = invalid_size
protectedinherited

Size required to store the object.

Definition at line 220 of file type-erasure.hpp.


The documentation for this class was generated from the following file: